K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

sửa lại đề đi \(\sqrt{a+\sqrt{b}}\) hay căn a+căn b

3 tháng 8 2017

đk \(a>0;b>0;a\ne b\)\(R=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{b}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}+\frac{a}{\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}\right)-\frac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}\)

\(R=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)\)

\(-\frac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}\)

\(R=\frac{a+b}{\sqrt{a}+\sqrt{b}}:\left(\frac{a+b+\sqrt{ab}+b+a-\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)-\frac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}\)

\(R=\frac{a+b}{\sqrt{a}+\sqrt{b}}.\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{2\left(a+b\right)}-\frac{\sqrt{a}+\sqrt{b}}{2}\)

\(R=\frac{\sqrt{a}-\sqrt{b}}{2}-\frac{\sqrt{a}+\sqrt{b}}{2}=\frac{-2\sqrt{b}}{2}=-\sqrt{b}\)

b) \(R=-1\Leftrightarrow-1=-\sqrt{b}\Leftrightarrow1=\sqrt{b}\Leftrightarrow b=1\)

b=(a+1)2 <=> 1=(a+1)2 <=> a+1=1 <=> a=0

vậy a = 0 ; b=1

18 tháng 3 2017

ta có P(x) = (x-1)(x-2)(x-3) + R(x)                                   (   R(x) = mx^2 + nx + i)
 => P(1) = m . 1 + n.1 + i = -15
=> P(2) = m . 2^2 + n . 2 + i = -15
=> P(3) = m . 3^2 + n . 3 + i = -9

còn lại tự làm nhé

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

17 tháng 7 2017

1.  \(6a^2-ab-15b^2=0\)

\(\Leftrightarrow6a^2-10ab+9ab-15b^2=0\)

\(\Leftrightarrow2a\left(3a-5b\right)+3b\left(3a-5b\right)=0\)

\(\Leftrightarrow\left(2a+3b\right)\left(3a-5b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{-3}{2}b\\a=\frac{5}{3}b\end{cases}}\)

-TH1:  \(a=\frac{-3}{2}b\)  thay vào M ta đc

\(M=\frac{11.\left(\frac{-3}{2}b\right)^2-2b.\frac{-3}{2}b+9b^2}{5\left(\frac{-3}{2}b\right)^2+3b.\frac{-3}{2}b+6b^2}=...\)

Tương tự cho TH2.

BÀi 3: b) Theo đề bài ta có Q(1) = 5; Q(14) = 9

Gọi số dư Q(x) chia cho (x-1)(x-14) là ax+b

=> Q(x) = P(x).(x-1)(x-14) + ax+b

Do đó Q(1) = P(x).(1-1)(1-14) + a.1 + b = a+b => a+b=5

và Q(14) = P(x).(14-1)(14-14) + a.14 + b = 14a+b => 14a+b=9

Giải hệ  \(\hept{\begin{cases}a+b=5\\14a+b=9\end{cases}}\)  tìm đc \(a=\frac{4}{13};b=\frac{61}{13}\)

Vậy số dư là  \(\frac{4}{13}x+\frac{61}{13}\)

28 tháng 5 2019

O M B A C H N

G/s N thuộc đoạn thẳng AB

a) Ta có AC, AB là tiêp tuyến (O)

=> AC=AB=R

Xét tứ giác ABCO có: 

AC=AB=BO=CO=R

=> ABCO là hình thoi

mặt khác \(\widehat{ABO}=90^o\)

=> ABCO là hình vuông

=> A,B,C,O cùng thuộc một đường tròn

Tứ giác BHAC nội tiếp vì \(\widehat{BHC}=\widehat{BAC}=\left(90^o\right)\)

=> A,B,C,H cùng thuộc một đường tròn

=> O, B, A, C, H cùng thuộc một đường tròn

b) \(AN.OM=\left(AB-BN\right)\left(MB+BO\right)=AB.BO-BN.BO+MB.\left(AB-BN\right)\)

\(=R^2-BN.R+MB.AN\)(1)

Ta có:

 AC//MB => \(\frac{AN}{BN}=\frac{AC}{MB}\Rightarrow AN.BM=AC.BN\Rightarrow AN.BM=R.BN\)(2)

(1), (2) => AN. OM=R^2

c) Đặt AN =x

=> BN=AB-BN=R-x

và MO=\(\frac{R^2}{AN}=\frac{R^2}{x}\Rightarrow BM=\frac{R^2}{x}-R\)

Diện tích tam giác BMH =\(\frac{1}{2}\left(R-x\right)\left(\frac{R^2}{x}-R\right)=\frac{9R^2}{4}\)

<=> \(\frac{\left(R-x\right)^2}{x}=\frac{9R}{2}\)

<=> \(R^2-\frac{13}{2}Rx+x^2=0\)

<=> \(\left(x-\frac{13}{4}R\right)^2=\frac{153}{16}R^2\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{17}+13}{4}R\left(loai\right)\\x=\frac{-3\sqrt{17}+13}{4}R\left(tm\right)\end{cases}}\)

Tìm đc AN => tìm đc OM

TH M thuộc đoạn thẳng BO tương tự