Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)
\(A=x^4-x-x^4-x^2-5x+5\)
\(A=-x^2-6x+5\)
Vậy \(A=-x^2-6x+5\)
\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)
\(B=4x^2+8x-8x-32-4\)
\(B=4x^2-36\)
Vậy \(B=4x^2-36\)
\(b)\) Ta có :
\(A=-x^2-6x+5\)
\(-A=x^2+6x-5\)
\(-A=\left(x^2+6x+9\right)-14\)
\(-A=\left(x+3\right)^2-14\ge-14\)
\(A=-\left(x+3\right)^2+14\le14\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)
Chúc bạn học tốt ~
Ta có \(f\left(1\right)=g\left(2\right)\)
hay \(2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4\) \(=4-10-b\)
\(6+a\) \(=-6-b\)
\(a+b\) \(=-6-6\)
\(a+b\) \(=-12\) \(\left(1\right)\)
Lại có \(f\left(-1\right)=g\left(5\right)\)
hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4\) \(=25-25-b\)
\(6-a\) \(=-b\)
\(-a+b\) \(=-6\)
\(b-a\) \(=-6\)
\(b\) \(=-b+a\) \(\left(2\right)\)
Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:
\(a+\left(-6+a\right)=-12\)
\(a-6+a\) \(=-12\)
\(a+a\) \(=-12+6\)
\(2a\) \(=-6\)
\(a\) \(=-6:2\)
\(a\) \(=-3\)
Mà \(a=-3\)
⇒ \(b=-6+\left(-3\right)=-9\)
Vậy \(a=3\) và \(b=-9\)
Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "
TH1:Tích có chứa 1 thừa số nguyên âm:
Ta có:\(^{a^2-1>a^2-4>a^2-7>a^2-10}\)
\(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>7\\a^2< 10\end{cases}}\)
\(\Rightarrow a^2=9\Rightarrow a=3\)
TH2: Tích có chứa 3 thừa số nguyên âm:
Ta có: \(a^2-1>a^2-4>a^2-7>a^2-10\)
\(\Rightarrow\hept{\begin{cases}a^2-1>0\\a^2-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>1\\a^2< 4\end{cases}}\)
\(\Rightarrow\)Không có giá trị nào của a trong TH2
Vậy a=3
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)
\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
+) Nếu \(a+b+c=0\) :
\(\Rightarrow\)\(a+b=-c\)
\(\Rightarrow\)\(b+c=-a\)
\(\Rightarrow\)\(a+c=-b\)
Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được :
\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
+) Nếu \(a+b+c\ne0\) :
Do đó :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)
\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)
\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(a=b=c\)
Suy ra :
\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\) hoặc \(P=8\)
Chúc bạn học tốt ~
Hình như đề là \(\overline{\left(a+1\right)a\left(a+2\right)\left(a+3\right)}\)thì phải bn ak.
Ko mình viết đúng đề đó bạn