Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi y
B1 X+3 chia het cho 5 7 9
B2 a ; Nhan x-1 vs 2 Roi tru cho nhau
b ; nhan x+1 vs 3
B3 nhan 3n +4 vs 4 ; 4n +5 vs3 roi tru
\(4n-5⋮2n-1\)
\(\Leftrightarrow4n-2-3⋮2n-1\)
\(\Leftrightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Leftrightarrow-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\text{Ư}\left(-3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2n\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow n\in\left\{-1;0;1;2\right\}\)
mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
\(6n+9⋮3n+1\)
\(\Leftrightarrow6n+2+7⋮3n+1\)
\(\Leftrightarrow2\left(3n+1\right)+7⋮3n+1\)
\(\Leftrightarrow7⋮3n+1\)
\(\Leftrightarrow3n+1\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow3n\in\left\{-8;-2;0;6\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{8}{3};-\frac{2}{3};0;2\right\}\)
mà \(n\in N\)
=> \(n\in\left\{0;2\right\}\)
có chia hết
a*q+r=a*18+12
- ta thấy 18chia hết cho 9 nên a*18chia hết cho 9 và 12 k chia hết cho 9
vậy achia hết cho 3 nhưng k chia hết cho 9
\(a;\frac{2n+5}{n+3}\)
Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)
\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)
\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản
\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)
Với \(B\in Z\)để n là số nguyên
\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{-2;-4\right\}\)
Vậy.....................
a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)
\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)
Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)
Vậy tta có đpcm
b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)
hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)
-n - 3 | 1 | -1 |
n | -4 | -2 |
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
a)
Ta có:
(n-1)∈Ư(15)={±1;±3;±5;±15}
=>n∈{2;0;4;-2;6;-4;16;-14}
Vậy: n∈{2;0;4;-2;6;-4;16;-14}
b)
Ta có:
2n-1 chia hết cho n-3
=>2(n-3)+5 chia hết cho n-3
=> 5 chia hết cho n-3
=> (n-3)∈Ư(5)={±1;±5}
=>n∈{4;2;8;-2}
Vậy: n∈{4;2;8;-2}
a, n-1 \(\in\)Ư(15)
\(\Rightarrow\)n - 1 \(\in\){ 1; -1 ; 3 ; -3 ; 5 ; -5 ; 15 ; -15}
\(\Rightarrow\)n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
Vậy n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
b, 2n-1 \(⋮\)n - 3
( n -3 ) + ( n -3 ) + 5 \(⋮\)n - 3
Vì n - 3 \(⋮\)n - 3
nên 5 \(⋮\)n - 3
\(\Rightarrow\)n - 3 \(\in\){ 1; -1 ; 5 ; -5 }
\(\Rightarrow\)n \(\in\){ 4 ; 2 ; 8 ; -2 }
Vậy n \(\in\){ 4 ; 2 ; 8 ; -2 }
~ HOK TỐT ~
bài này mà không biết,câu hỏi quá linh tinh
Ta có:
\(3a+5⋮9-2a\)
\(\Rightarrow3a+5⋮2a+\left(-9\right)\)
\(\Rightarrow2\left(3a+5\right)⋮2a+\left(-9\right)\)
\(\Rightarrow6a+10⋮2a+\left(-9\right)\)
\(\Rightarrow6a+\left(-27\right)+37⋮2a+\left(-9\right)\)
\(\Rightarrow3\left[2a+\left(-9\right)\right]+37⋮2a+\left(-9\right)\)
Vì \(2a+\left(-9\right)⋮2a+\left(-9\right)\)
\(\Rightarrow3\left[2a+\left(-9\right)\right]⋮2a+\left(-9\right)\)
\(\Rightarrow37⋮2a+\left(-9\right)\)
\(2a+\left(-9\right)\in\left\{-37;-1;1;37\right\}\) (1)
Vì \(a\in N\)
\(\Rightarrow a\ge0\)
\(\Rightarrow2a\ge0\)
\(\Rightarrow2a+\left(-9\right)\ge-9\) (2)
Từ (1) và (2)
\(\Rightarrow2a+\left(-9\right)\in\left\{-1;1;37\right\}\)
Vì \(a\in N\) nên ta có bảng sau:
Vậy với \(a\in\left\{4;5;23\right\}\) thì \(3a+5⋮9-2n\).
mk chưa hk số âm nên bn có thể lm cách khác dc ko