Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^2x-3a^2-4a+2+5a-x=0\)
\(\Leftrightarrow x\left(a^2-1\right)-3a^2+a+2=0\)
\(\Leftrightarrow x\left(a-1\right)\left(a+1\right)=\left(a-1\right)\left(3a+2\right)\)
Để pt vô nghiệm thì a+1=0
hay a=-1
32+1123+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}gfdrrffhjxxojmu09\)
Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.
Suy ra, phương trình (3) có nghiệm x = 2
Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.
Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7
Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
PT <=> 2aX-2X-aX+a=2a+1
<=> aX-2X=a+1 <=> (a-2)X=a+1
Để PT có nghiệm duy nhất => a-2\(\ne\)0 => a\(\ne\)2
PT có nghiệm là: \(X=\frac{a+1}{a-2}=\frac{a-2+3}{a-2}=1+\frac{3}{a-2}\)
\(\Leftrightarrow a^2x-a^2+4xa-3a-2+4x=0\)
\(\Leftrightarrow x\left(a^2+4a+4\right)=a^2+3a+2\)
Để pt có vô số nghiệm thì a+2=0
hay a=-2
ad k duyệt bài