K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

- Ta có: f(2) = 2a + 1.

- Và:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 4)

- Để hàm số liên tục tại x = 2 thì:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 4)

12 tháng 12 2018

Chọn C.

Ta có : 

Suy ra hàm số liên tục tại 

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Lời giải:
Để hàm số trên liên tục tại $x_0=0$ thì:
\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)

\(\Leftrightarrow \lim\limits_{x\to 0+}(a+\frac{4-x}{x+2})=\lim\limits_{x\to 0-}(\frac{\sqrt{1-x}+\sqrt{1+x}}{x})=a+2\)

\(\Leftrightarrow a+2=\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}\)

Mà \(\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}=-\infty \) nên không tồn tại $a$ để hàm số liên tục tại $x_0=0$

26 tháng 11 2017

Chọn B.

D = [-2; 2]

F(x) không xác định tại x = 3

 ; f(-2) = 0. Vậy hàm số liên tục tại x = -2

Vậy không tồn tại giới hạn của hàm số khi  x 2.

NV
2 tháng 3 2021

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x+3}-2}{x-1}=\lim\limits_{x\rightarrow1^+}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(ax+2\right)=a+2\)

Hàm liên tục tại x=1 khi:

\(a+2=\dfrac{1}{4}\Rightarrow a=-\dfrac{7}{4}\)

NV
2 tháng 3 2021

\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(x^2+x+1\right)=3\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(ax+2\right)=a+2\)

Hàm liên tục tại x=1 khi:

\(a+2=3\Leftrightarrow a=1\)

11 tháng 12 2017

Chọn B.

Ta có: ; f(0) = a + 2. 

Vậy để hàm số liên tục tại x = 0 thì a + 2 = 1 a = -1.

25 tháng 1 2019

Chọn B.

Ta có: D = (-; -2] [2; +∞).

 .và f(2) = 0.

 

Vậy hàm số liên tục tại x = 2.

Với -2 < x < 2 thì hàm số không xác định.

30 tháng 4 2021

\(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{x+1}-x-2}{x^2}=\lim\limits_{x\rightarrow0}\dfrac{\left(2\sqrt{x+1}\right)^2-\left(x+2\right)^2}{x^2\left(2\sqrt{x+1}+x+2\right)}=\lim\limits_{x\rightarrow0}\dfrac{4x+4-x^2-4x-4}{x^2\left(2\sqrt{x+1}+x+2\right)}=\lim\limits_{x\rightarrow0}\dfrac{-1}{2\sqrt{x+1}+x+2}=-\dfrac{1}{4}\)

\(f\left(0\right)=2-9m\)

De ham so lien tuc tai x=0

\(\Rightarrow f\left(0\right)=\lim\limits_{x\rightarrow0}f\left(x\right)\Leftrightarrow2-9m=-\dfrac{1}{4}\Rightarrow m=\dfrac{1}{4}\)

17 tháng 9 2018

- Ta có

Đề kiểm tra 15 phút Đại số 11 Chương 4 có đáp án (Đề 3)

- Hàm số liên tục tại x = 2.

Đề kiểm tra 15 phút Đại số 11 Chương 4 có đáp án (Đề 3)