K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

Đặt A=\(\left(a+\frac{1}{a}\right)x^2y^6=\frac{a^2+1}{a}\cdot x^2y^6\)

Ta thấy \(a^2+1>0;x^2y^6\ge0\)  => Để A <0 thì a <0.

28 tháng 6 2016

Mn giúp mk vs khocroi

HELP ME!!!!!!!!!!! PLEASE!!!! T_T

16 tháng 4 2017

tk đi dag âm nek

16 tháng 4 2017

Bạn k cho mình nhé mình đang âm nek

12 tháng 5 2018

a) Cho \(A=\left(a-7\right)x^8y^{10}\)

Theo đầu bài ta có: \(x^8>0;y^{10}>0\) 

để \(A>0\)

\(\Rightarrow a-7>0\)

\(\Rightarrow a>7\)

b) Theo đầu bài ta có: \(x^8>0;y^{10}>0\)

để A<0

=> a -7 < 0

=> a < 7

a: \(H=6x^3y^4-2x^4y^2+3x^2y^2+5x^4y^2-A\cdot x^3y^4\)

\(=x^3y^4\left(6-A\right)+x^4y^2\left(5-2\right)+3x^2y^2\)

\(=\left(6-A\right)\cdot x^3y^4+x^4y^2\cdot3+3x^2y^2\)

Để H có bậc là 6 thì 6-A=0

=>A=6

b: Khi A=6 thì \(H=\left(6-6\right)\cdot x^3y^4+3x^4y^2+3x^2y^2\)

\(=3x^4y^2+3x^2y^2\)

\(=3x^2y^2\left(x^2+1\right)\)

\(x^2+1>1>0\forall x\ne0\)

\(x^2>0\forall x\ne0\)

\(y^2>0\forall y\ne0\)

Do đó: \(x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>\(H=3x^2y^2\left(x^2+1\right)>0\forall x,y\ne0\)

=>H luôn dương khi x,y khác 0

đơn thức là học ở lớp 7

các bài này có trong lớp 7

=>đó là bài lớp 7

=>đpcm