Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với công thức ab = ƯCLN﴾a; b﴿.BCNN﴾a; b﴿
nên suy ra ƯCLN﴾a; b﴿ = 2940 : 210 = 14
Vậy a = 14m ; b = 14 n ﴾m ≥ n﴿
Thay vào a.b = 2940 được:
14m.14n = 2940
=> m.n = 2940 : ﴾14.14﴿ = 15
Vì m ≥ n nên 15 = 5.3 = 15.1
‐Với m = 5 ; n = 3 thì a = 70 ; b = 42
‐Với m = 15 ; n = 1 thì a = 210 ; b =1
UCLN của 2 số là:2940:210=14
Ta có:a=14.m
b=14.n
Ta có:a .b=2940
hay 14.m.14.n=2940
196(m.n)=2940
m.n=2940:196
m.n=15
m 1 3
n 15 5
=>a 14 42
b 210 70
Vậy ta có các cặp số (a;b)hoặc(b;a)={(14:210);(42;70)}
Tick nha bạn!
UCLN(a;b) =a.b/BCNN(a;b) = 2940/210 =14
a=14p;b= 14q với (p;q) =1 => 14p.14q =2940 => pq=15
+ p=1 ;q=15 => a=14;b=210
+ p=3; q=5 => a= 42;b=70
Vậy 2 số là 14;210 hoặc 42;70
Ta có : a . b = ƯCLN ( a ; b ) . BCNN ( a ; b )
Mà a . b = 2940 và BCNN ( a ; b ) = 210
⇒⇒ ƯCLN ( a ; b ) = 2940 : 210 = 14
⇒⇒ a = 14m ; b = 14n ( m ; n > 0 )
Thay a = 14m ; b = 14n vào a . b = 2940, ta được :
14m . 14n = 2940
196 . m . n = 2940
m . n = 15
⇒⇒ m ; n ∈ Ư ( 15 ) = { 1 ; 3 ; 5 ; 15 }
+, Với m = 1 ; n = 15 ⇒⇒ a = 14 ; b = 210
+, Với m = 3 ; n = 5 ⇒⇒ a = 42 ; b = 70
+, Với m = 5 ; n = 3 ⇒⇒ a = 70 ; b = 42
+, Với m = 15 ; n = 1 ⇒⇒ a = 210 ; b = 14
Vậy ( a ; b ) ∈ { ( 14 ; 210 ) ; ( 42 ; 70 ) ; ( 70 ; 42 ) ; ( 210 ; 14 ) }
ab = UCLN ( a,b); BCNN ( a,b )
=> UCLN (a,b) = 2940 : 210 = 14
Vậy a = 14m và b = 14n ( m > hoặc = n )
Thay a.b = 2940 ta có:
14m . 14n = 2940
=> m.n = 2940 : ( 14 x 14 ) = 15
Vì m > hoặc = n nên 15 = 5.3 = 15.1
Với m = 5; n = 3 => a = 70 ; b = 42
Với m = 15; n = 1 => a = 210; b = 1
Gọi số cần tìm là a và b ( giả sử a>b)
Ta có : a*b = 2940
Mà BCNN của chúng là 210
=> a chia hết cho b ( nếu a không chia hết cho b thì BCNN của chúng sẽ là :
a*b , mà a*b = 2940 nên a chỉ có thể chia hết cho b)
Vay a là 210 và b là 14