K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

Đáp án là D

Do a, b, c là ba số liên tiếp của một cấp số cộng có công sai là 2

nên b = a + 2, c = a + 4

a + 1, a + 3, a + 7 là ba số liên tiếp của một cấp số nhân

⇔ a + 1 a + 7 = a + 3 2

⇔ a = 1

Với  a = 1 ta có  b = 3 c = 5

Suy ra  a + b + c = 9

25 tháng 8 2017

NV
16 tháng 12 2020

Câu 1:

Dãy đã cho có thể viết dưới dạng công thức truy hồi sau:

\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=u_n+7n\end{matrix}\right.\)

\(u_{n+1}=u_n+7n\Leftrightarrow u_{n+1}-\dfrac{7}{2}\left(n+1\right)^2+\dfrac{7}{2}\left(n+1\right)=u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n\)

Đặt \(v_n=u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_{n+1}=v_n\end{matrix}\right.\)

\(\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)

\(\Rightarrow u_n-\dfrac{7}{2}n^2+\dfrac{7}{2}n=1\)

\(\Leftrightarrow u_n=\dfrac{7}{2}n^2-\dfrac{7}{2}n+1\)

\(\dfrac{7}{2}n^2-\dfrac{7}{2}n+1=35351\)

\(\Leftrightarrow\dfrac{7}{2}n^2-\dfrac{7}{2}n-35350=0\)

\(\Rightarrow n=101\)

Vậy đó là số hạng thứ 101

NV
16 tháng 12 2020

2.

Do a;b;c lập thành 1 cấp số cộng

\(\Rightarrow a+c=2b\)

\(\Leftrightarrow2R.sinA+2R.sinC=2.2R.sinB\)

\(\Leftrightarrow sinA+sinC=2sinB\)

\(\Leftrightarrow2sin\dfrac{A+C}{2}.cos\dfrac{A-C}{2}=4sin\dfrac{B}{2}cos\dfrac{B}{2}\)

\(\Leftrightarrow cos\dfrac{B}{2}cos\dfrac{A-C}{2}=2sin\dfrac{B}{2}cos\dfrac{B}{2}\)

\(\Leftrightarrow cos\dfrac{A-C}{2}=2sin\dfrac{B}{2}=2cos\dfrac{A+C}{2}\)

\(\Leftrightarrow cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{C}{2}\right)+sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)=2cos\left(\dfrac{A}{2}\right)cos\left(\dfrac{C}{2}\right)-2sin\left(\dfrac{A}{2}\right)sin\left(\dfrac{C}{2}\right)\)

\(\Leftrightarrow cos\left(\dfrac{A}{2}\right).cos\left(\dfrac{C}{2}\right)=3sin\left(\dfrac{A}{2}\right).sin\left(\dfrac{C}{2}\right)\)

\(\Leftrightarrow cot\left(\dfrac{A}{2}\right).cot\left(\dfrac{C}{2}\right)=3\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\begin{array}{l}{u_1} + {u_2} + {u_3} =  - 1 \Leftrightarrow {u_1} + {u_1} + d + {u_1} + 2d =  - 1\\ \Leftrightarrow 3{u_1} + 3d =  - 1\\ \Leftrightarrow 3.\left( {\frac{1}{3}} \right) + 3d =  - 1\\ \Leftrightarrow 3d =  - 2\\ \Leftrightarrow d =  - \frac{2}{3}\end{array}\)

Công thức tổng quát của số hạng \({u_n}\): \({u_n} = \frac{1}{3} + \left( {n - 1} \right)\left( { - \frac{2}{3}} \right)\)

b)    Ta có:

\(\begin{array}{l} - 67 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = 101\\ \Leftrightarrow n = 102\end{array}\)

 - 67 là số hạng thứ 102 của cấp số cộng

c)    Ta có:

\(\begin{array}{l}7 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 =  - 10\\ \Leftrightarrow n =  - 9\end{array}\)

 7 không là số hạng của cấp số cộng

Câu 2:

\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2u_1+4d=20\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u_1+4d-2u_1-5d=20-17\\2u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-d=3\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-3\\2u_1=17-5d=17+5\cdot3=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1=16\\d=-3\end{matrix}\right.\)

Câu 1:

Để a,b,c lập thành cấp số cộng thì

\(\left[{}\begin{matrix}a+c=2b\\a+b=2c\\b+c=2a\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x+1+x^2-1=2\cdot\left(3x-2\right)\\x+1+3x-2=2\left(x^2-1\right)\\x^2-1+3x-2=2\left(x+1\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2+x-6x+4=0\\2x^2-2=4x-1\\x^2+3x-3-2x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2-5x+4=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left(x-1\right)\left(x-4\right)=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left\{1;4\right\}\\x\in\left\{\dfrac{2+\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right\}\\x\in\left\{\dfrac{-1+\sqrt{21}}{2};\dfrac{-1-\sqrt{21}}{2}\right\}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

Gọi số hạng đầu tiên là $a$ và công sai $d$. Khi đó số hạng thứ 2 và 3 lần lượt là $a+d, a+2d$

Theo bài ra ta có:

$a+(a+d)+(a+2d)=12$

$\Rightarrow a+d=4$

$a^2+(a+d)^2+(a+2d)^2=60$

$\Leftrightarrow 3a^2+5d^2+6ad=60$

$\Leftrightarrow 3(4-d)^2+5d^2+6(4-d)d=60$

$\Leftrightarrow 2d^2-12=0$

$\Leftrightarrow d=\pm \sqrt{6}$

Nếu $d=\sqrt{6}$ thì $a=4-\sqrt{6}$. Khi đó 3 số cần tìm là $4-\sqrt{6},4, 4+\sqrt{6}$

Nếu $d=-\sqrt{6}$ thì $a=4+\sqrt{6}$. Khi đó 3 số cần tìm là $4+\sqrt{6}, 4, 4-\sqrt{6}$

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,u_{12}=u_1+\left(12-1\right)d=u_1+11d=\left(-3\right)+11\cdot2=19\)

b, Giả sử số 195 là số hạng thứ n (n \(\in\) N*) của cấp số cộng.

Ta có: 

\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow195=-3+\left(n-1\right)\cdot2\\ \Leftrightarrow n=100\)

Vậy số 195 là số hạng thứ 100 của cấp số cộng.

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Lời giải:

Gọi số hạng đầu tiên là $a$ và công sai $d$. Khi đó số hạng thứ 2 và 3 lần lượt là $a+d, a+2d$

Theo bài ra ta có:

$a+(a+d)+(a+2d)=12$

$\Rightarrow a+d=4$

$a^2+(a+d)^2+(a+2d)^2=66$

$\Leftrightarrow 3a^2+5d^2+6ad=66$

$\Leftrightarrow 3(4-d)^2+5d^2+6(4-d)d=66$

$\Leftrightarrow 2d^2-18=0$

$\Leftrightarrow d=\pm 3$

Nếu $d=3$ thì $a=1$. Khi đó 3 số cần tìm là $1,4, 7$

Nếu $d=-3$ thì $a=7$. Khi đó 3 số cần tìm là $7, 4, 1$

 

16 tháng 9 2023

\(S_3=\dfrac{3\left[2u_1+2d\right]}{2}\)

\(\Leftrightarrow2u_1+2d=\dfrac{2S_3}{3}\)

\(\Leftrightarrow2\left(u_1+d\right)=\dfrac{2S_3}{3}\)

\(\Leftrightarrow u_1+d=\dfrac{S_3}{3}=\dfrac{12}{3}=4\)

\(\Rightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_2=4\\u_3=7\end{matrix}\right.\)

mà \(u_1^2+u_2^2+u_3^2=1^2+4^2+7^2=66\) (thỏa đề bài)

Vậy 3 số hạng liên tiếp của 1 cấp số cộng là : \(1;4;7\)