Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
ta có : \(\dfrac{x}{3}=\dfrac{y}{7}\Leftrightarrow7x=3y\Leftrightarrow7x-3y=0\) (1)
ta có : \(\dfrac{y}{2}=\dfrac{z}{5}\Leftrightarrow5y=2z\Leftrightarrow5y-2z=0\) (2)
từ : \(x+y+z=-110\) và (1) ; (2)
ta có hệ phương trình : \(\left\{{}\begin{matrix}x+y+z=-110\\7x-3y=0\\5y-2z=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-12\\y=-28\\z=-70\end{matrix}\right.\)
vậy \(x=-12;y=-28;z=-70\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{52}{12}=\dfrac{13}{3}\)
\(\dfrac{x}{3}=\dfrac{13}{3}\Rightarrow x=13\\ \dfrac{y}{4}=\dfrac{13}{3}\Rightarrow y=\dfrac{52}{3}\\ \dfrac{z}{5}=\dfrac{13}{3}\Rightarrow z=\dfrac{65}{3}\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x-y+3z}{6-5+21}=\dfrac{110}{22}=5\)
\(\dfrac{x}{3}=5\Rightarrow x=15\\ \dfrac{y}{5}=5\Rightarrow y=25\\ \dfrac{z}{7}=5\Rightarrow z=35\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{52}{12}=\dfrac{13}{4}\)
Do đó: \(x=\dfrac{39}{3};y=13;z=\dfrac{65}{4}\)
Theo đề bài: \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{x}{4}=\frac{z}{7}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{20}\\\frac{x}{12}=\frac{z}{21}\end{cases}}\Leftrightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{21}}\)
Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{x}{12}=\frac{y}{20}=\frac{z}{21}=\frac{x+y-z}{12+20-21}=\frac{110}{11}=10\)
Suy ra \(x=10.12=120\); \(y=10.20=200\); \(z=10.21=210\)
Vậy ...
Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\) => \(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}\) \(\left(\text{*}\right)\)
\(\frac{y}{4}=\frac{z}{5}\) \(\left(\text{*}\text{*}\right)\)
\(x+y-z=10\) \(\left(\text{*}\text{*}\text{*}\right)\)
\(\left(\text{*}\right)\)\(\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)
\(\left(\text{*}\text{*}\right)\)\(\Leftrightarrow5y=4z\Leftrightarrow z=\frac{5y}{4}\)
Cả (*) và (**) thế vào (***)
\(\frac{2y}{3}+y-\frac{5y}{4}=10\Leftrightarrow\frac{5y}{12}=10\Leftrightarrow y=24\)
\(\Leftrightarrow x=16;z=30\)
Vậy ...
Tham khảo trên Yahoo nha!
X/2=y/3;y/4=z/5 va x+y-z=10. tim x,y,z
x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1)
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra:
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau)
Vậy:
x = 2.8=16
y = 2.12 = 24
z = 2.15 = 30
x/3=y/7=> x/6= y/14
y/2=z/5=> y/14= z/35
=> x/6= y/14= z/35 = (x+y+z)/6+14+35= -110/55= -2
=> x= -12, y= -28, z= -70.