K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vai trò của p,q,r là như nhau nên giả sử p>q>r
Xét p=2,ta tìm được 3 số là 2;3;5.Không thỏa
Xét p=3,ta tìm được 3 số là 3;5;7 thỏa 
Xét p>3
Bổ đề:Mọi số nguyên tố >3 nến đem bình phương lên thì luôn chia 3 dư 1
thật vậy các số nguyên tố lớn hơn 3 nện có dạng 3k+1 hoặc 3k+2
Nếu có dạng 3k+1,ta có:(3k+1)2=9k2+6k+1≡1(mod3)
Nếu có dạng 3k+2,ta có (3k+2)2=9k2+12k+4≡1(mod3)
Vậy nếu p>3 thì các số q,r>3nên khi bình phương lên đều dư 1
⇒p2+q2+r2≡0(mod3)
Vậy ta có (3;5;7) và các hoán vị 

Tick nhé 

1 tháng 11 2018

p1=2

p2=3

p3=5

p4=7

p1+p2+p3+p4=2+3+5+7=17 là số nguyên tố

đúng thì tk nha

1 tháng 11 2018

Với p1=2 =>p2=3,p3=5,p4=7(do p1<p2<p3<p4)                (1)

Với p1>2 suy ra tất cả chúng đều lẻ.Suy ra tổng của chúng là số chẵn lớn hơn 2 nên chia hết cho 2 hay là hợp số

Suy ra chúgn lần lượt là.........(1)

AH
Akai Haruma
Giáo viên
30 tháng 3

Lời giải:
Nếu $p,q,r$ đều không chia hết cho 3. Ta biết rằng 1 scp khi chia 3 chỉ có dư $0$ hoặc $1$.

$\Rightarrow p^2,q^2,r^2$ chia $3$ dư $1$

$\Rightarrow p^2+q^2+r^2$ chia $3$ dư $3$ (hay chia 3 dư 0)

$\Rightarrow p^2+q^2+r^2\vdots 3$

Mà $p^2+q^2+r^2>3$ nên không thể là số nguyên tố (trái với yêu cầu đề bài)

Do vậy tồn tại ít nhất 1 số chia hết cho 3 trong 3 số $p,q,r$. Không mất tính tổng quát, giả sử $p\vdots 3\Rightarrow p=3$.

Vì $p,q,r$ là số nguyên tố liên tiếp nên có thể xảy ra các TH: $(q,r)=(2,5)$ hoặc $(q,r)=(5,7)$

Thử thì thấy $(q,r)=(5,7)$

Vậy $(p,q,r)=(3,5,7)$ và hoán vị.

24 tháng 10

scp là gì

 

24 tháng 11 2016

p^2+q^2+r^2=3^2+5^2+7^2=83

          k cho mình nha!

22 tháng 3 2017

 Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ là hợp số, loại ﴿

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ loại ﴿

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ﴾ 2 số còn lại chia 3 dư 1 ﴿ loại

vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ﴾ 2 số còn lại chia hết cho 3 ﴿ chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 ‐ 3 ‐ 5 hoặc 3 ‐ 5 ‐ 7

Với 3 số nguyên tố là 2 ‐ 3 ‐ 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ﴾ là hợp số, loại ﴿

Vậy 3 số nguyên tố cần tìm là 3 5 7 

11 tháng 3 2016

p=3

q=5

r=7

27 tháng 12 2015

p=3

q=5

r=7