K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DD
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DV
3
NM
0
VD
2
B
18 tháng 10 2016
Chữ số tận cùng của lũy thừa 20152017 là 5
Vì 5. vs bao nhiêu số luỹ thừa thì cx bằng 5
TM
2
OY
5 tháng 12 2021
a) Ta có: \(3^{555}=3^{552}.3^3\)
Ta lại có: \(3^{552}=3^4.3^4.....3^4=81.81.....81\) (138 thừa số)
\(\Rightarrow3^{552}=\overline{...1}\)
Ta lại có nữa: \(3^3=\overline{...7}\)
Vậy \(3^{555}=\overline{...1}.\overline{...7}=\overline{...7}\)
b) Ta có: \(\left(2^7\right)^9=2^{63}=2^{60}.2^3\)
Ta lại có: \(2^{60}=2^4.2^4.....2^4=16.16.....16\) (15 thừa số)
\(\Rightarrow2^{60}=\overline{...6}\)
Ta lại có nữa \(2^3=8\)
Vậy \(\left(2^7\right)^9=\overline{...6}.8=\overline{...8}\)
NT
0
Có \(2^{3^{9000}}=2^{3^2.\left(3^2\right)^{4499}}=\left(2^{3^2}\right)^{9^{4499}}=512^{9^{4499}}\)
=> A = \(\left(512.47\right)^{9^{4499}}+1001^{20000}=24064^{9^{4499}}+1001^{20000}\)
Ta có: \(24064^{9^{4499}}\) đồng dư với \(64^{9^{4499}}\) ( mod 1000)
+) xét: 92 đồng dư với 1 (mod 20) => 94499 = (92)2249 .9 đồng dư với 1.9 = 9 ( mod 20)
=> 94499 = 20k + 9
=> \(64^{9^{4499}}=\left(2^6\right)^{20k+9}=\left(2^{20}\right)^{6k}.2^{6.9}=\left(2^{20}\right)^{6k+2}.2^{14}\)
Mà 220 đồng dư với 576 (mod 1000) nên \(64^{9^{4499}}=\left(2^{20}\right)^{6k+2}.2^{14}\) đồng dư với 576.16384 = 9 437 184 (mod 1000)
=> \(64^{9^{4499}}\) đồng dư với 184 mod 1000
=> \(24064^{9^{4499}}\) đồng dư với 184 (mod 1000)
+) ta có: 100120 000 đồng dư với 120 000 = 1 (mod 1000)
=> A đồng dư với 184 + 1 = 185 (mod 1000)
Vậy 3 chữ số tận cùng của A là 185