K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

gọi 2 cạnh góc vuông lần lượt là a và b(a,b có vai trò như nhau;a,bϵ N)

thì độ dài cạnh huyền là\(\sqrt{a^2+b^2}\)

theo đề bài ta có: \(2.\frac{1}{2}a.b=3\left(a+b+\sqrt{a^2+b^2}\right)\)

→ab-3a-3b=3\(\sqrt{a^2+b^2}\)

\(a^2b^2+9a^2+9b^2-6a^2b-6ab^2+18ab=9a^2+9b^2\)

\(a^2b^2-6a^2b-6ab^2+18ab=0\)

→ab-6a-6b+18=0→(a-6)(b-6)=18=1.18=2.9=3.6(vì a,b>0→a-6;b-6>-6 nên ta loại các giá trị âm)

ta có bảng:

a-6     1                               2                              3

b-6      18                            9                               6

a           7                              8                              9

b           24                              15                         12

thử lại ta có tất cả đều t/m

vậy (a,b)ϵ\(\left\{\left(7,24\right);\left(8,15\right);\left(9,12\right)\right\}\)

 

31 tháng 5 2021

Gọi hai cạnh góc vuông của tam giác lần lượt là a;b(a,b>0)

Vì tam giác có cạnh huyền là 5, ta có phương trình:  \(a^2+b^2=5^2=25\) (1)

Diện tích tam giác vuông bằng 6m2 ,ta có phương trình: \(\dfrac{1}{2}ab=6\) \(\Leftrightarrow ab=12\) 

\(\Leftrightarrow a=\dfrac{12}{b}\) thay vào pt (1) ta được:

\(\left(\dfrac{12}{b}\right)^2+b^2=25\) \(\Leftrightarrow b^4-25b^2+144=0\)\(\Leftrightarrow\left(b^2-16\right)\left(b^2-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b^2=16\\b^2=9\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}b=4\Rightarrow a=\dfrac{12}{4}=3\\b=3\Rightarrow a=\dfrac{12}{3}=4\end{matrix}\right.\) (thỏa mãn)

Chu vi tam giác vuông là: \(3+4+5=12\) (m)

Vậy ...

31 tháng 5 2021

Sai rồi Lê Thị Thục Hiền diện tích là 6 m2 chứ cm2 đâu.

29 tháng 8 2016

Bạn ơi cái này là 2 cạnh góc vuông hay là một cạch gv 1 cạnh huyeeng bn

29 tháng 8 2016

pn hỏi mk ko hỉu

9 tháng 4 2016

6;8;10

18 tháng 8 2023

Gọi \(a;b;c\) là các cạnh tam vuông

Theo đề bài ta có :

 \(\left\{{}\begin{matrix}a^2+b^2=c^2\\\dfrac{1}{2}ab=\left(a+b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=c^2\left(1\right)\\ab=2\left(a+b+c\right)\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow c^2=\left(a+b\right)^2-2ab\)

\(\Leftrightarrow c^2=\left(a+b\right)^2-4\left(a+b+c\right)\) (do (2))

\(\Leftrightarrow c^2+4=\left(a+b\right)^2-4\left(a+b\right)-4c+4\)

\(\Leftrightarrow\left(a+b\right)^2-4\left(a+b\right)+4=c^2+4c+4\)

\(\Leftrightarrow\left(a+b-2\right)^2=\left(c+2\right)^2\)

\(\Leftrightarrow a+b-2=c+2\left(đk:a+b\ge2\right)\)

\(\Leftrightarrow c=a+b-4\)

Thay vào \(\left(2\right)\) ta được

\(ab=2\left(a+b+a+b-4\right)\)

\(\Leftrightarrow ab=4a+4b-8\)

\(\Leftrightarrow ab-4a-4b+16=8\)

\(\Leftrightarrow a\left(b-4\right)-4\left(b-4\right)=8\)

\(\Leftrightarrow\left(a-4\right)\left(b-4\right)=8\)

\(\Leftrightarrow\left(a-4\right);\left(b-4\right)\in\left\{1;2;4;8\right\}\)

\(\Leftrightarrow\left(a;b\right)\in\left\{\left(5;12\right);\left(6;8\right);\left(8;6\right);\left(12;5\right)\right\}\)

\(\Leftrightarrow\left(a;b;c\right)\in\left\{\left(5;12;13\right);\left(6;8;10\right);\left(8;6;10\right);\left(12;5;13\right)\right\}\) thỏa đề bài

23 tháng 7 2016

 Ta có 
AM -AH =BC/2 - AH =7 
=> BC -2AH =14 
=> 2AH = BC-14 (1*) 

Mặt khác: 
AB+BC+CA= 72 
=> AB+CA = 72-BC 
=> (AB+AC)^2 = (72-BC)^2 

=> AB^2 + CA^2 + 2BC.AH = 72^2 - 144BC + BC^2 (do AB.AC = BC.AH) 

=> 2BC.AH = 5184 - 144BC (2*) 

Thay (1*) vào (2*) 

=> BC(BC-14) = 5184 - 144BC 
=> BC^2 + 130BC - 5184 =0 
=> sqrt(delta) =194 
=> BC = (-130 + 194)/2 = 32 
=> AH = (BC-14)/2 = 9 
=> S(ABC) =BC.AH/2 = 144 cm^2

30 tháng 7 2017

Gọi a;b là độ dài 2 cạnh góc vuông. Do tam giác vuông; ta có: 

Độ dài cạnh huyền = √(a²+b²) 

Độ dài đường cao = ab/√(a²+b²) 


Do đó chu vi = a+b+√(a²+b²) = 72 (1) 


Hiển nhiên trung tuyến phải dài hơn đường cao nên ta có: 

1/2.√(a²+b²) -ab/√(a²+b²) = 7 

<=> (a²+b²) -2ab = 14√(a²+b²) (2) 


Kết hợp (1) và (2) ta được: 

a²+b² -2ab = 14.(72-a-b) 

<=> a²+b² +14a +14b -1008 = 2ab 

<=> (a+b)² +14(a+b) -1008 = 4ab (3) 


Từ (1) ta có: 

√(a²+b²) = 72-a-b 

<=> a²+b² = a²+b²+5184 -144a-144b +2ab 

<=> 144(a+b) = 2ab +5184 

<=> a+b = ab/72 +36 (4) 


Thay (4) vào (3) ta được: 

(ab/72 +36)² +14.(ab/72 +36) -1008 = 4ab 

<=> (ab +2592)² + 14.72.(ab+2592) -1008.72² = 4.72²ab 

<=> (ab)² +5184(ab) +2592² +1008(ab) -4.72²(ab) +14.72.2592 -1008.72² =0 

<=> (ab)² -14544(ab) +4105728 =0 

<=> (ab -14256)(ab -288) =0 


Thử lại: 

Nếu: ab = 14256 thì a+b = 14256/72 +36 = 234 

Giải pt: X² -234X +14256 =0 

Ta thấy: Δ' = 117²-14256 = -567 <0 nên pt vô nghiệm 


Nếu: ab = 288 thì a+b = 288/72 +36 = 40 

Giải pt: X² -40X² +288 =0 

Ta được: X1 = 20 -4√7 ; X2 = 20 +4√7 

Đây là độ dài 2 cạnh góc vuông. Từ đây tính được cạnh huyền và đường cao thấy thỏa gt. 


Kết luận: Tam giác đã cho có diện tích là 144 (=ab/2)

29 tháng 5 2016

Gọi a và b là 2 cạnh góc vuông. Theo đề ta có: 

a^2+b^2=13^2=169. (*)

a+b=17 =>b=17-a thay vào (*), ta được: a^2+(17-a)^2=169 => a =12 và b=5 

Chu vi tam giác là: 12+5+13=30cm.

Ai k mk mk k lại!

29 tháng 5 2016

Chu vi tam giác là:

              13 + 17 = 30 (cm) 

                      Đ/s: 30 cm

Bài này cho HS lớp 1 nha bạn!!

1 tháng 12 2016

Gọi x,y,zx,y,z là các cạnh của tam giác vuông (1≤x≤y<z)(1≤x≤y<z). Ta có :

                          x2+y2=z2(1)x2+y2=z2(1)

                          xy=2(x+y+z)(2)xy=2(x+y+z)(2)

Từ (1)(1) ta có :

z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4

                                                            ⇒(x+y−2)2=(z+2)2⇒(x+y−2)2=(z+2)2 

                                                            ⇒x+y−2=z+2(x+y≥2)⇒x+y−2=z+2(x+y≥2)

Thay z=x+y−4z=x+y−4 vào (2)(2) ta được :

            (x−4)(y−4)=8(x−4)(y−4)=8

⇔x−4=1;y−4=8⇔x−4=1;y−4=8 hoặc x−4=2;y−4=4x−4=2;y−4=4

⇔x=5;y=12⇔x=5;y=12 hoặc x=6;y=8x=6;y=8

24 tháng 5 2020

lalallalalallalalla mij k djd jfjfj fiiddi ididi iddiidid didiididid idid idid idi didi dit con me chung may cho chet vois ogs