K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 12 2020

Ta có: \(2016=2^5.3^2.7\)\(2^m>2016\Rightarrow m>5\)

\(\Rightarrow2^m⋮2^5\Rightarrow2^n⋮2^5\)

suy ra \(2^m-2^n=2^5\left(2^{m-5}-2^{n-5}\right)=2^5.3^2.7\)

\(\Rightarrow2^{m-5}-2^{n-5}=3^2.7\)

Có VP là số lẻ nên VT cũng là số lẻ suy ra \(2^{n-5}=1\Leftrightarrow n=5\)

\(2^m=2016+2^5=2048=2^{11}\Rightarrow m=11\).

Vậy \(\left(m,n\right)=\left(11,5\right)\).

10 tháng 11 2022

VP và VT là gì vậy ạ

23 tháng 12 2023

M = 1 + 3 + 3² + ... + 3²⁰²¹

⇒ 3M = 3 + 3² + 3³ + ... + 3²⁰²²

⇒ 2M = 3M - M

= (3 + 3² + 3³ + ... + 3²⁰²²) - (1 + 3 + 3² + ... + 3²⁰²¹)

= 3²⁰²² - 1

⇒ 2M + 1 = 3²⁰²² + 1 - 1 = 3²⁰²²

Mà 2M + 1 = 3²

⇒ 3²⁰²² = 3²ⁿ

⇒ 2n = 2022

⇒ n = 2022 : 2

⇒ n = 1011

23 tháng 12 2023

M = 1 + 3 + 32 + ... + 32021

3M = 3(1 + 3 + 32 + ... + 32021)

3M = 3 + 32 + ... + 32022

3M - M = (3 + 32 + ... + 32022) - (1 + 3 + 32 + ... + 32021)

2M = 32022 - 1 (1)

Thay (1) vào 2M + 1 = 3^2N, ta có

2M + 1 = 3^2n

=> 32022 - 1+ 1 = 3^2n

=> 32022 = 3^2n

=> 2n = 2022

=> n = 1011

Vậy n = 1011

17 tháng 10 2021

mn mn ơiii

17 tháng 10 2021

helllppppppppp

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512