Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ƯCLN(a; b)=16 => a = 16.m; b = 16.n [(m;n)=1; (m > n)]
Ta có: 16.m + 16.n = 128
=> 16.(m + n) = 128
=> m + n = 128 : 16 = 8
Mà m > n; (m;n)=1 => m = 7; n = 1 hoặc m = 5; n = 3
+ Với m = 7; n = 1 thì a = 16.7 = 112; b = 16.1 = 16
+ Với m = 5; n = 3 thì a = 16.5 = 80; b = 16.3 = 48
Vậy các cặp số (a;b) thỏa mãn đề bài là: (112;16) ; (80;48)
UCLN (a,b) - 6 nên a = 6a', b = 6b' và UCLN (a,b) = 1.
Theo đề bài a'b' = 63 =3.3.7
Do a > b nên a'>b'.' Chọn 2 số a' và b' có tích = 63, nguyên tố cùng nhau. a' > b' ta được.
a' | 63 | 9 |
b' | 1 | 7 |
Do đó.
a | 387 | 54 |
b | 6 | 42 |
Do ƯCLN ( a, b ) = 18 => a = 18a' ; b = 18b' [ a', b' thuộc N* ; ( a', b' ) = 1 ]
Khi đó:
a + b = 128
=> 18a' + 18b' = 128
=> 18 ( a' + b' ) = 128
=> a' + b' = 7,1111.... không thuộc N - loại
Vậy không có số tự nhiên a và b cần tìm.
Đặt a=16m , b=16n mà ƯCLN (m,n)=1 ( m, n thuộc N)
Ta có : a+b = 16m+16n=16(m+n)=128
=> m+n=128:16=8
Ta được m = 5 , n = 3 ; m = 7 , n = 1
Vậy : a = 80 , b = 48 ; a = 112 ; b = 16
Tích của hai số a và b = ƯCLN (a, b) nhân BCNN (a, b)
Bg
Ta có: BCNN (a, b) = 336; ƯCLN (a, b) = 12 và a > b
Tích của a và b = 336.12 = 4032
Vì ƯCLN (a, b) = 12
Nên a = 12.m; b = 12.n (m > n; m và n nguyên tố cùng nhau)
Mà tích a.b = 4032
=> 12m.12.n = 4032
=> 12.12.m.n = 4032
=> 144.m.n
=> m.n = 4032 : 144 = 28
Vì m và n nguyên tố cùng nhau (m > n)
Nên m = 28 và n = 1 hay m = 7 và n = 4
=> a = 28.12 = 336 và b = 12 hay a = 12.7 = 84 và b = 12.4 = 48
Vậy...
Bài 1:
Gọi số dư khi chia 346,414,539 cho a là $r$. ĐK: $r< a$
Ta có:
$346-r\vdots a$
$414-r\vdots a$
$539-r\vdots a$
Suy ra:
$539-r-(414-r)\vdots a\Rightarrow 125\vdots a$
$539-r-(346-r)\vdots a\Rightarrow 193\vdots a$
$(414-r)-(346-r)\vdots a\Rightarrow 68\vdots a$
$\Rightarrow a=ƯC(125,193,68)$
$\Rightarrow ƯCLN(125,193,68)\vdots a$
$\Rightarrow 1\vdots a\Rightarrow a=1$
Bài 2:
Vì $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Ta có:
$a+b=16x+16y=128$
$\Rightarrow x+y=8$
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (7,1)$
$\Rightarrow (a,b)=(16, 112), (48,80), (80,48), (112,16)$
a = 112 và b = 16
\(a=112\)
\(b=16\)
nha