Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,(a,b)+[a,b]=10
Gọi ƯCLN(a,b) là d
BCNN(a,b) là m, ta có
a=dm (m,n)=1
a-dn m>n
=> [a,b]=dmn
Ta thấy (a,b)+[a,b]=10
Mà (a,b)=d;[a,b]=dmn
=> d+dmn=10 => d(mn+1)=10
=> d và mn+1 đều thuộc Ư(10)
Ư(10)={1;2;5;10}
d,mn+1 thuộc {1;2;5;10}
Ta có bảng sau
d | mn+1 | mn | m | n | a | b |
1 | 10 | 9 | 9 | 1 | 9 | 1 |
2 | 5 | 4 | 4 | 1 | 8 | 2 |
5 | 2 | 1 | bỏ | bỏ | bỏ | bỏ |
10 | 1 | 0 | bỏ | bỏ | bỏ | bỏ |
BẠN TỰ KẾT LUẬN NHÉ!
Đặt a = 12.a
b = 12.b
ƯCLN(a,b) = 1
Ta có : a.b = 2016
12.a.12.b = 2016
( 12.12 ).a.b = 2016
144.a.b = 2016
a.b = 2016 : 144
a.b = 14
Vì a.b = 14 và ƯCLN(a,b) = 1 nên ( a=1 ; b=14 ) ; ( a=14 ; b=1 ) ; ( a=2 ; b=7 ) ; ( a=7 ; b=2 )
Suy ra : ( a=12 ; b=168 ) ; ( a=168 ; b=12 ) ; ( a=24 ; b=84 ) ; ( a=84 ; b=24 )
a) Gọi UCLN(a,b) là d (d thuộc N*)
=>\(\hept{\begin{cases}a=dn\\b=dm\end{cases}}\) [m;n thuộc N; (m;n)=1; m< hoặc =n]
=>a+b=dm+dn=d(m+n)=32(m+n)=256
=>m+n=256/32=8
Hai số nguyên tố cùng nhau có tổng bằng 8 là 1 và 7; 3 và 5.
Ta có bảng sau
m | 1 | 3 |
n | 7 | 5 |
a | 32 | 96 |
b | 224 | 160 |
Vậy 2 số tự nhiên a;b cần tìm là a=32 và b=224 ; a=96 và b=160
b) tương tự câu a
Đặt a=12.a
b=12.b
UCLN(a,b)=1
Ta có : a.b=2016
12.a.12.b=2016
(12.12).a.b=2016
144.a.b=2016
a.b=2016:144
a.b=14
Vì a.b=14 và UCLN(a,b)=1 nên
(a=1;b=14);(a=14;b=1);(a=2;b=7);(a=7;b=2)
suy ra (a=12;b=168);(a=168;b=12);(a=24;b=84);(a=84;b=24)