Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh rằng nếu các số TN m và n thỏa mãn hệ thức 3m-2n=1 thì m và n là 2 số nguyên tố cùng nhau
Ai trả lời:nhanh nhất,đúng nhất,hay nhất,đầy đủ nhất thì mk k cho nha
Các bạn trả lời nhanh giùm mk
Cảm ơn các bạn
a) Vì: m là số nguyên tố
=> m>1
=> 7m>7 và chia hết cho 7 (do 7 chia hết cho 7)
=> Là hợp số
=> Vô lí
Vậy ko có SNT m nào t/m.
b) Vì: n thuộc N hay n là SNT cx ok nhá
=> n-2<n^2+4
Vì SNT đc phân tích thành 1 và chính nó
=> n-2=1
=> n=3
c) Giải thích tương tự câu b
=> Tìm đc n=2
=> m=1.7=7
d) Phân tích thành nhân tử r lm giống như câu b,c thoy
Tìm x, y nguyên biết: 2x (3y – 2) + (3y – 2) = -55
=>(3y – 2)(2x + 1) = -55
=> 2x + 1 = -55/(3y - 2) (1)
Để x nguyên thì 3y – 2 ∈ Ư(-55) = {1; 5; 11; 55; -1; -5; -11; -55}
- 3y – 2 = 1 => 3y = 3 => y = 1, thay vào (1) => x = 28
- 3y – 2 = 5 => 3y = 7 => y = 7/3 (Loại)
- 3y – 2 = 11 => 3y = 13 => y = 13/3 (Loại)
- 3y – 2 = 55 => 3y = 57 => y = 19 , thay vào (1) => x = -1
- 3y – 2 = - 1 => 3y = 1 => y = 1/3 (Loại)
- 3y – 2 = -5 => 3y = -3 => y = -1, thay vào (1) => x = 5
- 3y – 2 = -11 => 3y = -9 => y = -3, thay vào (1) => x = 2
- 3y – 2 = -55 => 3y = -53 => y = -53/3 (Loại)
Vậy ta có 4 cặp số x, y nguyên thoả mãn là: (x ; y ) = (28; 1), (-1; 19), (5; -1), (2; -3)
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.
Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.
Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.
Vậy số tự nhiên n cần tìm là 3.
Bài 1
...=((2n-2):2+1):2=756
(2(n-1):2+1)=756×2
n-1+1=1512
n=1512