Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mk vt lại câu hỏi nha:
Tìm hai số nguyên dương a và b nhỏ nhất để các biểu thức sau là các phân số tối giản:
\({2 \over a^2+b^2+98};{3 \over a^2+b^2+99};{4 \over a^2+b^2+100};...;{100 \over a^2+b^2+196}\)
Ai nhanh mk k cho
mk lại vt sai rùi, cho mk vt lại lần nx nha:
Tìm hai số nguyên dương a và b nhỏ nhất để các biểu thức sau là các phân số tối giản:
2/a2+b2+98;3/a2+b2+99;4/a2+b2+100;...;100/a2+b2+196
ai nhanh và đúng nhất mk sẽ k cho nha
Cầu 1:
\(\frac{a+b}{a^2+ab+b^2}=\frac{49}{1801}\)
Biến đổi ta có: \(\frac{a+b}{\left(a+b\right)^2-ab}=\frac{49}{1801}\)
Cứ cho a+b=49 thì
Thế a+b vào đẳng thức trên đc:
\(\frac{a+b}{2401-ab}=\frac{49}{1801}\)
Từ đó: ta có
\(\hept{\begin{cases}a+b=49\\ab=600\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=24\\b=25\end{cases}}\)hoặc \(\hept{\begin{cases}b=24\\a=25\end{cases}}\)
Vậy phân số cần tìm là ........... (có 2 p/s nha)
Câu 2 Dễ mà ~~~~~~~
Làm biếng :3
1) với a là số nguyên thì phân số a/74 khi n ko thuộc bội hay ước của 74
2) 60/108 rút gọn đi thì được phân số 15/27 ,sau đó ta nhân cả tử và mẫu với 5 được a/b = 75/135
vậy a/b = 75/135
còn câu 3 thì mình bó tay chấm com
Bài 3:
Dễ thấy 20162019 \(⋮\) 4; 82018 \(⋮\) 4. Đặt 20162019 = 4k; 82018 = 4h \(\left(k,h\in N\right)\).
Ta có: \(2A=7^{4k}-3^{4h}=2401^k-81^h=...1-\left(...1\right)=...0\)
Từ đó 2A chia hết cho 5.
Mà A là số tự nhiên và (2; 5) = 1 nên A chia hết cho 5.
Đề không sai mà bạn. Đề thi chuyển lớp ít khi sai nhiều như thế lắm.
Gọi \(d=UCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\)
Suy ra phân số đã cho là phân số tối giản (đpcm)
Cái sau tương tự nha bạn
Bài 2 \(C=\frac{5}{x-2}\) .DO x nguyên nên để C nhỏ nhất thì x-2 phải là số nguyên âm lớn nhất => x-2=-1 =>x=1
Vậy với x=1 thì C đạt giá trị nhỏ nhất
Cái sau tương tự nha bạn
a , Gọi \(d=ƯCLN\)\(\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
\(\Leftrightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản với mọi n .
Giải từng bài
Bài 1 :
Ta có :
\(\frac{23+n}{40+n}=\frac{3}{4}\)
\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)
\(\Leftrightarrow\)\(92+4n=120+3n\)
\(\Leftrightarrow\)\(4n-3n=120-92\)
\(\Leftrightarrow\)\(n=28\)
Vậy số cần tìm là \(n=28\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)
Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n
Chúc bạn học tốt ~
Mình chịu