Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau
$a>b\Rightarrow x>y$
$BCNN(a,b)=6xy=120$
$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$
$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$
b. Bạn làm tương tự.
bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho
Lời giải:
a. Gọi $d=ƯCLN(a,b)$. Khi đó, đặt $a=dx, b=dy$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Khi đó: $BCNN(a,b)=dxy$
Theo bài ra: $d+dxy=19$
$\Rightarrow d(1+xy)=19$
Do $d, 1+xy$ đều là số tự nhiên nên có 2 TH xảy ra:
TH1: $d=1, 1+xy=19\Rightarrow d=1, xy=18$
Do $ƯCLN(x,y)=1$ nên $(x,y)=(1,18), (2,9), (9,2), (18,1)$
$\Rightarrow (a,b)=(dx, dy) +(1,18), (2,9), (9,2), (18,1)$
b,c bạn làm tương tự theo hướng của câu a nhé.
Bài 1:
a: UCLN(30;90)=30
BCNN(30;90)=90
b: UCLN(140;210;56)=14
BCNN(140;210;56)=840
c: UCLN(105;84;30)=3
BCNN(105;84;30)=420
a)vì ƯCLN(a,b)=15
=>a=15m ,n=15n (ƯCLN(m,n)=1)
BCNN(a,b)=300
15m.n=300
=>m.n=20
có:
m=1 , n=20 => a=15 , b=300
m=4 , n=5 =>a=60 ,b=75
=> hai số phải tìm a và b là : (15 và 300) , (60 và 75)
b)vì ƯCLN (a,b)=10
=>a=10m , b=10n (ƯCLN(m,n)=1)
BCNN(a,b)=30
=>10m.n=30
=>m.n=3
có:
m=1 , n=3 =>a=10 , b= 30
=> a,b=10 và 30
Do ƯCLN(a; b) = 15 => a = 15 x m; b = 15 x n (m; n) = 1
=> BCNN(a; b) = 15 x m x n = 300
=> m x n = 300 : 15 = 20
Giả sử a > b => m > n do (m; n) = 1 => m = 20; n = 1 hoặc m = 5; n = 4
+) Với m = 20 và n = 1 thì a = 15 x 20 = 300; b = 15 x 1 = 15
+) Với m = 5 và n = 4 thì a = 15 x 5 = 75; b = 15 x 4 = 60
Vậy các cặp giá trị (m; n) thỏa mãn đề bài là: (300; 15); (75; 60); (15; 300); (60; 75).
I am chịu