Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải mk ko biết, chỉ biết kết quả thôi. Cô giáo mk bảo bài này phải mò, kết quả là 21978
Gọi số tự nhiên có 5 chữ số phải tìm là: abcde
Khi đó đảo ngược lại có số mới là: edcba
Theo bài ra ta có: abcde x 4 = edcba
<=> + 10d + e(10000a + 1000b + 100c ) x 4 =
Lời giải:
Gọi số tự nhiên có 5 chữ số cần tìm là: abcde.
Số đó được viết theo thứ tự ngược lại là: edcba.
Theo bài ra ta có phép nhân: abcde×4=edcba.
Vì abcde là một số có 5 chữ số, mà khi nhân với số 4 được một số cũng có 5 chữ số nên a chỉ có thể là 1 hoặc 2 (vì a khác 0).
Lại có tích riêng thứ nhất 4×e=...a nên a chỉ có thể là 2.
Ta có phép nhân: 2bcde×4=edcb2.
Xét tích riêng thứ nhất: 4×e=..2. Do đó, e chỉ có thể là 3 hoặc 8.
Xét tích riêng thứ năm: 4×2=..e. Do đó, e chỉ có thể là 8 hoặc 9.
Vậy e=8. Ta có phép nhân: 2bcd8×4=8dcb2.
Xét tích riêng thứ tư: 4×b+q=d, với q là số nhớ từ tích riêng thứ ba. Do đó, bchỉ có thể là 0 hoặc 1 hoặc 2.
+) Nếu b=0. Ta có phép nhân: 20cd8×4=8dc02.
Xét tích riêng thứ hai: 4×d+3=...0 (không có chữ số d nào thỏa mãn).
Vậy không xảy ra khả năng này.
+) Nếu b=1. Ta có phép nhân: 21cd8×4=8dc12.
Xét tích riêng thứ tư: 4×1+q=d, với q là số nhớ từ tích riêng thứ ba. Do đó, d>4.
Xét tích riêng thứ hai: 4×d+3=..1. Do đó, d chỉ có thể là 2 hoặc 7.
Vậy d=7. Ta có phép nhân: 21c78×4=87c12.
Xét tích riêng thứ hai: 4×7+3=31. Vậy số nhớ từ tích riêng thứ hai là 3
Xét tích riêng thứ tư: 4×1+q=7, với q là số nhớ từ tích riêng thứ ba. Do đó, q=3
Xét tích riêng thứ ba: 4×c+3=3c¯. Do đó, 4×c+3=30+c. Vậy c=9.
Ta có phép nhân: 21978×87912. Thử lại thấy đúng.
Đáp số: 21978.