Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giả sử số đó là: a
a chia 11 dư 2 => a - 2 chia hết cho 11 => a - 2 + 33 chia hết cho 11 => a + 31 chia hết cho 11
a chia 12 dư 5 => a - 5 chia hết cho 12 => a - 5 + 36 chia hết cho 12 => a + 31 chia hết cho 12
mà (11;12) = 1
suy ra: a + 31 chia hết cho 132
hay a chia 132 dư 101
Bài 1:
Giả sử số đó là: a
a chia 11 dư 2 => a - 2 chia hết cho 11 => a - 2 + 33 chia hết cho 11 => a + 31 chia hết cho 11
a chia 12 dư 5 => a - 5 chia hết cho 12 => a - 5 + 36 chia hết cho 12 => a + 31 chia hết cho 12
mà (11;12) = 1
suy ra: a + 31 chia hết cho 132
hay a chia 132 dư 101
Gọi số cần tìm là a ( a∈Na∈N ; a≤999a≤999 )
Theo bài ra , ta có :
a : 8 dư 7 => ( a+1 ) ⋮⋮ 8
a : 31 dư 28 => ( a+ 3 ) ⋮⋮ 28
Ta thấy ( a+1 ) + 64 ⋮⋮ 8 = ( a+3 ) +62 ⋮⋮ 31
=> a+65 ⋮⋮ 8 và 31
Mà ( 8;31 ) =1
=> a+65 ⋮⋮ 248
Vì a ≤≤ 999 => a+65 ≤≤ 1064
Để a là số tự nhiên lớn nhất thỏa mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn a+65248=4a+65248=4
=> a=927
Vậy số cần tìm là 927
Gọi số cần tìm là a
ta có a +1 chia hết cho 2;3;4;5;6
=> a+1 thuộc BC(2;3;4;5;6) ; BCNN(2;3;4;5;6) =60
=> a =60k -1 với k thuộc N*
a thuộc {59;119;179,,,,,}
a nhỏ nhất chia hết cho 7 => a =119