Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\sqrt{4x^2+12x+9}=2-x\)
\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)
\(\Leftrightarrow\left|2x+3\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
\(\)
a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)
\(=x+3+\sqrt{\left(x-3\right)^2}\)
\(=x+3+\left|x-3\right|\)
\(=x+3-\left(x-3\right)\)
\(=x+3-x+3\)
\(=6\)
b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)
\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)
\(=\left|x+2\right|-\left|x\right|\)
\(=x+2-\left(-x\right)\)
\(=x+2+x\)
\(=2x+2=2\left(x+1\right)\)
c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)
\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)
\(=\frac{\left|x-1\right|}{x-1}\)
\(=\frac{x-1}{x-1}=1\)
d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)
\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)
\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)
\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)
\(=\left|x-2\right|-1\)
\(=-\left(x-2\right)-1\)
\(=-x+2-1\)
\(=-x+1=-\left(x-1\right)\)
a) \(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{3.\left(\sqrt{x}-3\right)+x+9}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-5-\left(\sqrt{x}-3\right)}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-2}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\sqrt{x}-2}=\dfrac{x}{\sqrt{x}-2}\)
b) \(M< 0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)
Kết hợp điều kiện ta được \(0< x< 4\) thì M < 0
c) Từ câu b ta có M < 0 \(\Leftrightarrow0< x< 4\)
nên \(x\inℤ\) để M nguyên âm <=> \(x\in\left\{1;2;3\right\}\)
Thay lần lượt các giá trị vào M được x = 1 thỏa
d) \(M=\dfrac{x}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{4}{\sqrt{x}-2}=\left(\sqrt{x}-2+\dfrac{4}{\sqrt{x}-2}\right)+4\)
Vì x > 4 nên \(\sqrt{x}-2>0\)
Áp dụng BĐT Cauchy ta có
\(M=\left(\sqrt{x}-2+\dfrac{4}{\sqrt{x}-2}\right)+4\ge2\sqrt{\left(\sqrt{x}-2\right).\dfrac{4}{\sqrt{x}-2}}+4=8\)
Dấu "=" xảy ra khi \(\sqrt{x}-2=\dfrac{4}{\sqrt{x}-2}\Leftrightarrow x=16\left(tm\right)\)
1) \(M=\left(\dfrac{3}{\sqrt[]{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5}{x-3\sqrt[]{x}}-\dfrac{1}{\sqrt[]{x}}\right)\left(x>0;x\ne9\right)\)
\(\Leftrightarrow M=\left(\dfrac{3\left(\sqrt[]{x}-3\right)}{\left(\sqrt[]{x}+3\right)\left(\sqrt[]{x}-3\right)}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}-\dfrac{1}{\sqrt[]{x}}\right)\)
\(\Leftrightarrow M=\left(\dfrac{3\sqrt[]{x}-9+x+9}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5-\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)
\(\Leftrightarrow M=\left(\dfrac{3\sqrt[]{x}+x}{x-9}\right):\left(\dfrac{2\sqrt[]{x}-5-\sqrt[]{x}+3}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)
\(\Leftrightarrow M=\left(\dfrac{\sqrt[]{x}\left(\sqrt[]{x}+3\right)}{x-9}\right):\left(\dfrac{\sqrt[]{x}-2}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)
\(\Leftrightarrow M=\left(\dfrac{\sqrt[]{x}}{\sqrt[]{x}-3}\right):\left(\dfrac{\sqrt[]{x}-2}{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}\right)\)
\(\Leftrightarrow M=\dfrac{\sqrt[]{x}}{\sqrt[]{x}-3}.\dfrac{\sqrt[]{x}\left(\sqrt[]{x}-3\right)}{\sqrt[]{x}-2}\)
\(\Leftrightarrow M=\dfrac{x}{\sqrt[]{x}-2}\)
2) Để \(M< 0\) khi và chỉ chi
\(M=\dfrac{x}{\sqrt[]{x}-2}< 0\left(1\right)\)
Nghiệm của tử là \(x=0\)
Nghiệm của mẫu \(\sqrt[]{x}-2=0\Leftrightarrow\sqrt[]{x}=2\Leftrightarrow x=4\)
Lập bảng xét dấu... ta được
\(\left(1\right)\Leftrightarrow0< x< 4\)
Mình có ý tưởng vầy nè. Bạn phát triên nó xe sao
Điều kiện \(-1\le x\le1\)
Đặt \(\hept{\begin{cases}!x!=a\left(0\le a\le1\right)\\\sqrt{1-x^2}=b\left(0\le b\le1\right)\end{cases}\Rightarrow a^2+b^2=1}\)
\(BPT\Leftrightarrow2ab+\left(1-k\right)\left(a+b\right)+2-k\le0\)
\(\Leftrightarrow k\ge\frac{2ab+a+b+2}{a+b+1}\)
Vậy giờ bạn làm bài khác nè
Tìm GTNN của \(\frac{2ab+a+b+2}{a+b+1}\)
Với \(\hept{\begin{cases}\left(0\le a\le1\right)\\\left(0\le b\le1\right)\\a^2+b^2=1\end{cases}}\)
Ý tưởng của alibaba nguyễn gần đúng như ý tưởng của cô.
Nhưng thay vì đưa về hệ, cô đặt \(\left|x\right|+\sqrt{1-x^2}=t\) , khi đó \(1\le t\le\sqrt{2}\).
Sau đó rút k theo t ta được \(k\ge\frac{t^2+t+1}{t+1}=t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
Khi đó giá trị nhỏ nhất mà k cần đạt chính là GTLN của \(t+\frac{1}{t+1}\) với \(1\le t\le\sqrt{2}\).
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{9}\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{5\sqrt{x}}{9x-1}\right):\left(1-\dfrac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+5\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\cdot\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3x}{3\sqrt{x}-1}\cdot\dfrac{1}{3}\)
\(=\dfrac{x}{3\sqrt{x}-1}\)
b) Ta có: \(9x^2-10x+1=0\)
\(\Leftrightarrow\left(9x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào P, ta được:
\(P=\dfrac{1}{3-1}=\dfrac{1}{2}\)
c) Thay \(x=8-2\sqrt{7}\) vào P, ta được:
\(P=\dfrac{8-2\sqrt{7}}{3\left(\sqrt{7}-1\right)-1}=\dfrac{8-2\sqrt{7}}{3\sqrt{7}-4}\)
\(=\dfrac{-10+16\sqrt{7}}{47}\)
x-9=(cănx-3)(cănx+3)
x+cănx-6=(cănx-2)(cănx+3)=-(2-cănx)(cănx+3)
x-3cănx=x(căn-3)
tự quy đồng rút gọn nha
a/ Với x = - 1 thì BĐT đúng.
Xét \(x\ne-1\)
Ta có: \(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}\le0\)
\(\Leftrightarrow x^3+3x^2\sqrt{x+1}-4\sqrt{\left(x+1\right)^3}\le0\)
\(\Leftrightarrow\frac{x^3}{\sqrt{\left(x+1\right)^3}}+3.\frac{x^2}{\sqrt{\left(x+1\right)^2}}-4\le0\)
Đặt \(\frac{x}{\sqrt{x+1}}=t\)thì ta có bpt thành
\(t^3+3t^2-4\le0\)
\(\Leftrightarrow\left(t-1\right)\left(t+2\right)^2\le0\)
Tới đây thì đơn giản rồi b làm tiếp nhé.
Câu b còn lại mình nghĩ chỉ cần bình phương rồi chuyển cái chứa căn sang 1 bên không chứa căn sang 1 bên. Sau đó bình phương thêm 1 lần nữa rồi đặt nhân tử chung là ra :)
Ây da quên:
\(\left(2t+3\right)\left(t-1\right)^2\le0\)
Xét TH: VT = 0
Ta suy ra \(\orbr{\begin{cases}t=-\frac{3}{2}\left(L\right)\\t=1\left(C\right)\end{cases}}\Leftrightarrow x=2\)
Xet TH2: VT < 0 thì: \(t< -\frac{3}{2}\)
Kết hợp đk suy ra vô nghiệm.
Vậy x = 2
x=1/4