Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép tính:(1)/((y-z)(x^2+xz-y^2-yz))+(1)/((z-x)(y^2+zy-z^2-xz))+(1)/((x-y)(x^2+yz-z^2-xy|)
\(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{\left(x^2-yz\right).\left(y+z\right)}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}+\frac{\left(y^2-xz\right).\left(x+z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}+\frac{\left(z^2-xy\right).\left(x+y\right)}{\left(x+z\right)\left(y+z\right)\left(x+y\right)}\)
\(=\frac{x^2y-y^2z+x^2z-yz^2+y^2x-x^2z+zy^2-xz^2+z^2x-x^2y+yz^2-xy^2}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(=\frac{0}{\left(x+y\right)\left(x+z\right)\left(y+z\right)}\)
\(=0\)\(\left(\text{Đ}K:x+y,y+z,z+x\ne0\right)\)
Tham khảo nhé~
\(A=\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-z\right)\left(y-x\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)
\(=\frac{x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
Phân tích tử thức ta có:
\(TS=x^2\left(z-y\right)+y^2\left(x-z\right)+z^2\left(y-x\right)\)
\(=x^2\left(z-y\right)-y^2\left[\left(z-y\right)+\left(y-x\right)\right]+z^2\left(y-x\right)\)
\(=x^2\left(z-y\right)-y^2\left(z-y\right)-y^2\left(y-x\right)+z^2\left(y-x\right)\)
\(=\left(z-y\right)\left(x^2-y^2\right)+\left(y-x\right)\left(z^2-y^2\right)\)
\(=\left(z-y\right)\left(x-y\right)\left(x+y\right)+\left(y-x\right)\left(z-y\right)\left(z+y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(-x-y+z+y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
Vậy \(A=1\)