Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}\)
\(=\dfrac{x+1+x-18+x+2}{x-5}\)
\(=\dfrac{3x-15}{x-5}\)
\(=\dfrac{3\left(x-5\right)}{x-5}\)
\(=\dfrac{3}{1}\)
\(=3\)
\(\dfrac{x+1}{x-5}+\dfrac{x-18}{x-5}+\dfrac{x+2}{x-5}\\ =\dfrac{x+1+x-18+x+2}{x-5}\\ =\dfrac{\left(x+x+x\right)+\left(1-18+2\right)}{x-5}\\ =\dfrac{3x-15}{x-5}=\dfrac{3\left(x-5\right)}{x-5}=3\)
\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(x\left(x+1\right)+x\left(x-3\right)=4x\)
\(x^2+x+x^2-3x=4x\)
\(2x^2-2x=4x\)
\(2x^2-2x-4x=0\)
\(2x\left(x-3\right)=0\)
\(2x=0\Leftrightarrow x=0\)
hoặc
\(x-3=0\Leftrightarrow x=3\)
b) \(ĐKXĐ:x\ne\pm4\)
\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)
\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)
\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)
\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)
\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)
\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)
\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)
a, \(\frac{x+4}{x^2-1}-\frac{x-5}{x^2-x}\)
\(=\frac{x+4}{\left(x-1\right)\left(x+1\right)}-\frac{x-5}{x\left(x-1\right)}\)
\(=\frac{\left(x+4\right)\left(x^2-x\right)-\left(x-5\right)\left(x^2-1\right)}{\left(x-1\right)\left(x+1-x\right)}\)
\(=\frac{\left(x^3+4x^2-x^2-4x\right)-\left(x^3-5x^2-x+5\right)}{x^2-x+x-1-x^2+x}\)
\(=\frac{x^3+4x^2-x^2-4x-x^3-5x^2-x+5}{x-1}\)
\(=\frac{-2x^2-5x+5}{x-1}=\frac{-2x^2}{x-1}-\frac{5\left(x-1\right)}{\left(x-1\right)}=\frac{-2x^2}{x-1}-5\)
bn ơi mình để ý kĩ thì dấu "=" thứ 4 của bạn chưa chuyển dấu
Ta có \(\left(\frac{1}{x^2+4x+4}-\frac{1}{x^2-4x+4}\right):\left(\frac{1}{x+2}+\frac{1}{x-2}\right)\)
\(=\frac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x-2+x+2\right)\left(x-2-x-2\right)}{\left(x-2\right)^2\left(x+2\right)^2}:\frac{2x}{\left(x+2\right)\left(x-2\right)}\)
\(\frac{-4.2x}{\left(x+2\right)^2\left(x-2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{2x}=\frac{-4}{\left(x+2\right)\left(x-2\right)}\)
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
\(ĐKXĐ:x\ne\pm2\)
\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(=\left[\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right]\)
\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}=\frac{2x}{\left(x+2\right)^2}.\frac{-\left(x-2\right)\left(x+2\right)}{x}\)
\(=\frac{-2\left(x-2\right)}{x+2}\)
\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(\Leftrightarrow\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)
\(\Leftrightarrow\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2+x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{2x}{\left(x+2\right)^2}\cdot\frac{\left(x-2\right)\left(x+2\right)}{x+4}\)
\(\Leftrightarrow\frac{2x^2-4x}{\left(x+2\right)\left(x+4\right)}\)
\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)
Đang đánh máy thì bấm gửi -..-
\(\frac{4}{x-5}\)- \(\frac{1}{x+5}\)+\(\frac{13x-x^2}{\left(5-x\right)\left(5+x\right)}\)= \(\frac{4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}\)- \(\frac{x-5}{\left(x-5\right)\left(x+5\right)}\)- \(\frac{x\left(x-13\right)}{\left(x-5\right)\left(5+x\right)}\)=\(\frac{4\left(x+5\right)-x+5+x\left(x-13\right)}{\left(x-5\right)\left(x+5\right)}\)= \(\frac{x^2-10x+12}{\left(x-5\right)\left(x+5\right)}\)
\(\frac{4}{x-5}-\frac{1}{x+5}+\frac{13x-x^2}{\left(5-x\right)\left(x+5\right)}\)ĐKXĐ : \(x\ne\pm5\)
\(=\frac{4\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{\left(x+5\right)\left(x-5\right)}-\frac{13x-x^2}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{4x+20-x+5-13x+x^2}{\left(x-5\right)\left(x+5\right)}=\frac{-10x+25+x^2}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{x-5}{x+5}\)