Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)
b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
a: Ta có: \(x\left(2-3x\right)+\left(3x^3-x^2\right):x\)
\(=2x-3x^2+3x^2-x\)
=x
b: Ta có: \(2x\left(x-3y\right)-\left(8x^3y-12x^2y^2\right):2xy\)
\(=2x^2-6xy-4x^2+6xy\)
\(=-2x^2\)
a: \(=15x^5-25x^4+15x^3\)
b: \(=2x^3+10x^2-8x-x^2-5x+4\)
\(=2x^3+9x^2-13x+4\)
Bài 2
A = (x + 2)^ 2 - x - 3 x (x + 1) = x² + 4x + 4 - x² + 2x + 3 = 6x + 7
B = x^3 - 2x² + 5x - 10 = x² x (x - 2) + 5 x (x - 2) = (x - 2) x (x² + 5)
Vậy x^3 - 2x² + 5x - 10 : (x - 2) = x² + 5
\(a,=-15x^3+10x^4+20x^2\\ b,=2x^3+2x^2+4x-x^2-x-2=2x^3+x^2+3x-2\)
a. \(x^4-9x^2+x^2-9=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)+\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x^2-9\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-9=0\\x^2+1=0\left(VL\right)\end{cases}}\)
\(\Leftrightarrow x^2-9=0\)\(\Leftrightarrow x=\pm3\)
a) Ta có: \(\dfrac{1-x}{x^2-2x+1}+\dfrac{x+1}{x-1}\)
\(=\dfrac{1-x}{\left(x-1\right)^2}-\dfrac{x+1}{1-x}\)
\(=\dfrac{1-x}{\left(1-x\right)^2}-\dfrac{x+1}{1-x}\)
\(=\dfrac{1-x-1}{1-x}=\dfrac{-x}{1-x}=\dfrac{x}{x-1}\)
b) Ta có: \(\dfrac{2x}{3y^4z}\cdot\left(-\dfrac{4y^2z}{5x}\right)\cdot\left(-\dfrac{15y^3}{8xz}\right)\)
\(=\dfrac{2x\cdot4y^2z\cdot15y^3}{3y^4z\cdot5x\cdot8xz}\)
\(=\dfrac{120xy^5z}{120x^2y^4z^2}=\dfrac{y}{xz}\)
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
a) x(3 - x) + (x + 1)(x - 1)
= 3x - x2 + x2 - x + x - 1
= 3x - 1