Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({x^5}:{x^3} = {x^{5 - 3}} = {x^2}\);
b) \((4{x^3}):{x^2} = (4:1).({x^3}:{x^2}) = 4x\);
c) \((a{x^m}):(b{x^n}) = (a:b).({x^m}:{x^n}) = (a:b).{x^{m - n}}\)(a ≠ 0; b ≠ 0; m, n \(\in\) N, m ≥ n).
a) \((3{x^6}):(0,5{x^4}) = (3:0,5).({x^6}:{x^4}) = 6.{x^{6 - 4}} = 6{x^2}\);
b) \(( - 12{x^{m + 2}}):(4{x^{n + 2}}) = ( - 12:4).({x^{m + 2}}:{x^{n + 2}}) = - 3.{x^{m + 2 - n - 2}} = - 3.{x^{m - n}}\)(m, n \(\in\) N, m ≥ n).
a) \(3{x^5}.5{x^8} = 3.5.{x^5}.{x^8} = 15.{x^{5 + 8}} = 15.{x^{13}}\).
b) \( - 2{x^{m + 2}}.4{x^{n - 2}} = - 2.4.{x^{m + 2}}.{x^{n - 2}} = - 8.{x^{m + 2 + n - 2}} = - 8.{x^{m + n}}\) (m, n \(\in\) N; n > 2).
a) Ta có: \(A=7x\left(x-5\right)+3\left(x-2\right)\)
\(=7x^2-35x+3x-6\)
\(=7x^2-32x-6\)
Thay x=0 vào biểu thức \(A=7x^2-32x-6\), ta được:
\(7\cdot0^2-32\cdot0-6\)
\(=-6\)
Vậy: -6 là giá trị của biểu thức \(A=7x\left(x-5\right)+3\left(x-2\right)\) tại x=0
b) Ta có: \(B=4x\left(2x-3\right)-5x\left(x-2\right)\)
\(=8x^2-12x-5x^2+10x\)
\(=3x^2-2x\)
Thay x=2 vào biểu thức \(B=3x^2-2x\), ta được:
\(3\cdot2^2-2\cdot2=3\cdot4-4=12-4=8\)
Vậy: 8 là giá trị của biểu thức \(B=4x\left(2x-3\right)-5x\left(x-2\right)\) tại x=2
c) Ta có: \(C=a^2\left(a+b\right)-b^2\left(a^2-b^2\right)\)
\(=a^3+a^2b-b^2a^2+b^4\)
Thay a=1 và b=1 vào biểu thức \(C=a^3+a^2b-b^2a^2+b^4\), ta được:
\(1^3+1^2\cdot1-1^2\cdot1^2+1^4\)
=1+1-1+1
=2
Vậy: 2 là giá trị của biểu thức \(C=a^2\left(a+b\right)-b^2\left(a^2-b^2\right)\) tại a=1 và b=1
d) Ta có: \(D=m\left(m-n+1\right)-n\left(n+1-m\right)\)
\(=m^2-mn+m-n^2-n+mn\)
\(=m^2-n^2+m-n\)
Thay \(m=-\frac{2}{3}\) và \(n=-\frac{1}{3}\) vào biểu thức \(D=m^2-n^2+m-n\), ta được:
\(\left(-\frac{2}{3}\right)^2-\left(\frac{-1}{3}\right)^2+\frac{-2}{3}-\frac{-1}{3}\)
\(=\frac{4}{9}-\frac{1}{9}-\frac{1}{3}\)
\(=\frac{1}{3}-\frac{1}{3}=0\)
Vậy: 0 là giá trị của biểu thức \(D=m\left(m-n+1\right)-n\left(n+1-m\right)\) tại \(m=-\frac{2}{3}\) và \(n=-\frac{1}{3}\)
a) \({x^2}.{x^4} = {x^{2 + 4}} = {x^6}\).
b) \(3{x^2}.{x^3} = 3.1.{x^{2 + 3}} = 3{x^5}\).
c) \(a{x^m}.b{x^n} = a.b.{x^{m + n}}\) (a ≠ 0; b ≠ 0; m, n \(\in\) N).