K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

a)\(\sqrt{25}+2\sqrt{49}=5+2\cdot7=5+14=19\)
b) \(\sqrt{16}\cdot\sqrt{25}+\sqrt{169}:\sqrt{49}=4\cdot5+13:7=20+\dfrac{13}{7}\) = \(\dfrac{153}{7}\)
c) \(\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{7}=3-\sqrt{7}+\sqrt{7}=3\)
d) \(2\sqrt{3}-\sqrt{75}+2\sqrt{12}=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}\) \(=\sqrt{3}\)

24 tháng 8 2021

a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)

\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)

\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)

b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)

c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)

19 tháng 10 2016

a, =\(9\sqrt{2}\)

b, =21

21 tháng 9 2018

a) \(=9\sqrt{2}\)

b) \(=21\)

học tốt.

a: \(=4\cdot5+14:7\)

=20+2

=22

a: \(=2\cdot\dfrac{4\sqrt{3}}{5}+3\cdot\dfrac{3\sqrt{3}}{7}-\dfrac{3\sqrt{3}}{2}\)

\(=\dfrac{8\sqrt{3}}{5}+\dfrac{9\sqrt{3}}{7}-\dfrac{3\sqrt{3}}{2}\)

\(=\dfrac{112\sqrt{3}+90\sqrt{3}-105\sqrt{3}}{70}=\dfrac{97\sqrt{3}}{70}\)

b: \(\left(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\right)^2\)

\(=3-\sqrt{5}+3+\sqrt{5}-2\cdot\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=6-2\cdot\sqrt{4}=6-2\cdot2=2\)

c: \(=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}\)

\(=-\dfrac{2\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)

18 tháng 10 2020

a) \(\sqrt{36}.\sqrt{121}+\sqrt[3]{-64}-\sqrt[3]{125}\)

\(=6.11+\left(-4\right)-5=66-9=57\)

b) \(\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}-30\sqrt{\frac{3}{25}}\)

\(=\sqrt{25.3}+\left|\sqrt{3}-2\right|-30.\frac{\sqrt{3}}{\sqrt{25}}\)

\(=5\sqrt{3}+2-\sqrt{3}-30.\frac{\sqrt{3}}{5}\)

\(=5\sqrt{3}+2-\sqrt{3}-6\sqrt{3}=2-2\sqrt{3}\)

c) \(\sqrt{11-4\sqrt{7}}-\frac{12}{1+\sqrt{7}}=\sqrt{7-4\sqrt{7}+4}-\frac{12}{1+\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\frac{12}{1+\sqrt{7}}=\left|\sqrt{7}-2\right|-\frac{12}{1+\sqrt{7}}\)

\(=\left(\sqrt{7}-2\right)-\frac{12}{\sqrt{7}+1}=\frac{\left(\sqrt{7}-2\right)\left(\sqrt{7}+1\right)}{\sqrt{7}+1}-\frac{12}{\sqrt{7}+1}\)

\(=\frac{5-\sqrt{7}}{\sqrt{7}+1}-\frac{12}{\sqrt{7}+1}=\frac{-7-\sqrt{7}}{\sqrt{7}+1}\)

\(=\frac{-\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}=-\sqrt{7}\)

bài 1: 

a: Ta có: \(2\sqrt{18}-9\sqrt{50}+3\sqrt{8}\)

\(=6\sqrt{2}-45\sqrt{2}+6\sqrt{2}\)

\(=-33\sqrt{2}\)

b: Ta có: \(\left(\sqrt{7}-\sqrt{3}\right)^2+7\sqrt{84}\)

\(=10-2\sqrt{21}+14\sqrt{21}\)

\(=12\sqrt{21}+10\)

Bài 2: 

a: Ta có: \(\sqrt{\left(2x+3\right)^2}=8\)

\(\Leftrightarrow\left|2x+3\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=8\\2x+3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{11}{2}\end{matrix}\right.\)

b: Ta có: \(\sqrt{9x}-7\sqrt{x}=8-6\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}=8\)

hay x=4

c: Ta có: \(\sqrt{9x-9}+1=13\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow x-1=16\)

hay x=17