Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right)2\sqrt{6}\)
\(=12-6\sqrt{18}+10\sqrt{12}-\sqrt{48}\)
\(=12-6\sqrt{3.6}+10\sqrt{3.2^2}-\sqrt{3.4^2}\)
\(=12-6\sqrt{3}.\sqrt{6}+20\sqrt{3}-4\sqrt{3}\)
\(=12\sqrt{6}+\left(-6+20-4\right)\sqrt{3}\)
\(=12\sqrt{6}+10\sqrt{3}\)
mk ko biết mk làm có đúng ko nữa vì mk năm nay mới lên lớp 9 thoy
mk làm đc là do mk tự học
nếu thấy đúng thì k để mk biết nhé
a) Kết quả rút gọn xấu (+dài) nữa. (có thể đề sai)
b)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left[\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right].\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\)
c) \(\frac{\sqrt{5-2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=\frac{\left(\sqrt{5}-\sqrt{2}\right)^2}{3}\)
a) \(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}=\left[\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right].\frac{1}{\sqrt{6}}\)
\(=\left(\frac{\sqrt{6}}{2}-2\sqrt{6}\right).\frac{1}{\sqrt{6}}=\frac{1}{2}-2=-\frac{3}{2}\)
\(\sqrt{10-4\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
\(=\sqrt{2^2-2.2.\sqrt{6}+\left(\sqrt{6}\right)^2}+\sqrt{3^2-2.3.2\sqrt{6}+\left(2\sqrt{6}\right)^2}\)
\(=\sqrt{\left(2-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
\(=-\left(2-\sqrt{6}\right)-\left(3-2\sqrt{6}\right)\)
\(=-2+\sqrt{6}-3+2\sqrt{6}\)
\(=-5+3\sqrt{6}\)
\(\sqrt{16-6\sqrt{7}}+\sqrt{32-8\sqrt{7}}\)
\(=\sqrt{3^2-2.3.\sqrt{7}+\left(\sqrt{7}\right)^2}+\sqrt{2^2-2.2.2\sqrt{7}+\left(2\sqrt{7}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}+\sqrt{\left(2-2\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}-\left(2-2\sqrt{7}\right)\)
\(=3-\sqrt{7}-2+2\sqrt{7}\)
\(=1+\sqrt{7}\)
\(a,\sqrt{\left(\sqrt{2}-3\right)^2}.\sqrt{11+6\sqrt{2}}\)
\(=|\sqrt{2}-3|.\sqrt{9+6\sqrt{2}+2}\)
\(=(3-\sqrt{2}).\left(\sqrt{\left(3+\sqrt{2}\right)^2}\right)\)
\(=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)\)
\(=9-2=7\)
\(b,\sqrt{\left(\sqrt{3}-3\right)^2}.\sqrt{\frac{1}{3-\sqrt{3}}}\)
\(=\left(3-\sqrt{3}\right).\frac{\sqrt{1}}{\sqrt{3-\sqrt{3}}}\)
\(=\frac{3-\sqrt{3}}{\sqrt{3-\sqrt{3}}}\)
\(=\sqrt{3-\sqrt{3}}\)
\(c,-\frac{2}{3}\sqrt{\frac{\left(a-b\right)^3.b^5}{c}}.\frac{9}{4}\sqrt{\frac{c^3}{2\left(a-b\right)}}.\sqrt{98b}\)
\(=-\frac{2}{3}.\frac{\sqrt{\left(a-b\right)^3.b^5}}{\sqrt{c}}.\frac{9}{4}.\frac{\sqrt{c^3}}{\sqrt{2\left(a-b\right)}}.7\sqrt{2b}\)
\(=-\frac{2}{3}.\frac{\left(a-b\right)b^2\sqrt{\left(a-b\right)b}}{\sqrt{c}}.\frac{9}{4}.\frac{c\sqrt{c}}{\sqrt{2\left(a-b\right)}}.7\sqrt{2b}\)
\(=-\frac{2}{3}.\frac{9}{4}.7.\frac{\left(a-b\right).b^2\sqrt{\left(a-b\right)b}}{\sqrt{c}}.\frac{c\sqrt{c}}{\sqrt{2\left(a-b\right)}}.\sqrt{2b}\)
\(=-\frac{21}{2}.\left(a-b\right).b^2\sqrt{b}.c.\sqrt{b}\)
\(=\frac{-21}{2}.\left(a-b\right).b^3.c\)
\(d,\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\frac{1}{2}.2\sqrt{2}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+5\sqrt{2}-\sqrt{2}\right).2\sqrt{6}\)
\(=\left(\sqrt{6}-3\sqrt{3}+4\sqrt{2}\right).2\sqrt{6}\)
\(=2.6-18\sqrt{2}+16\sqrt{3}\)
\(=12-18\sqrt{2}+16\sqrt{3}\)
\(=\left[\sqrt{2.2.6}-\sqrt{4.4.3}+\sqrt{5.5.2}-\sqrt{\left(\frac{1}{4}\right)^2.8}\right].\sqrt{54}\)
\(=\left[\sqrt{24}-\sqrt{48}+\sqrt{50}-\sqrt{\frac{1}{2}}\right].\sqrt{54}\)
\(=\sqrt{24.54}-\sqrt{48.54}+\sqrt{50.54}-\sqrt{\frac{1}{2}.54}\)
\(=\sqrt{1296}-\sqrt{2592}+\sqrt{2700}-\sqrt{27}\)
\(=36-\sqrt{1296.2}+10\sqrt{27}-\sqrt{27}\)
\(=36-36\sqrt{2}+9\sqrt{27}\)
\(=36-36\sqrt{2}+27\sqrt{3}\)