K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2023

\(\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{6-2\sqrt{5}}}\\ =\left(\sqrt{10}-\sqrt{2}\right)\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}\\ =\sqrt{10}\cdot\sqrt{3+\sqrt{5}}-\sqrt{2}\cdot\sqrt{3+\sqrt{5}}\\ =\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{\left(5+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\\ =5+\sqrt{5}-\sqrt{5}-1\\ =4\)

a: \(=12\sqrt{80}=48\sqrt{5}\)

b: \(=2\sqrt{5}\cdot2\sqrt{3}-10=4\sqrt{15}-10\)

c: =20-9=11

\(B=\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\cdot\sqrt{5-2\sqrt{6}}\)

\(=\left(5+2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)\cdot\left(5-2\sqrt{6}\right)\)

\(=\sqrt{3}-\sqrt{2}\)

8 tháng 9 2023

\(B=\left(\dfrac{4}{1-\sqrt{5}}+\dfrac{1}{2+\sqrt{5}}-\dfrac{4}{3-\sqrt{5}}\right)\left(\sqrt{5}-6\right)\)

\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}+\dfrac{2-\sqrt{5}}{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}-\dfrac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right]\left(\sqrt{5}-6\right)\)

\(B=\left[\dfrac{4\left(1+\sqrt{5}\right)}{1-5}+\dfrac{2-\sqrt{5}}{4-5}-\dfrac{4\left(3+\sqrt{5}\right)}{9-5}\right]\left(\sqrt{5}-6\right)\)

\(B=\left[-\dfrac{4\left(1+\sqrt{5}\right)}{4}-\dfrac{2-\sqrt{5}}{1}-\dfrac{4\left(3+\sqrt{5}\right)}{4}\right]\left(\sqrt{5}-6\right)\)

\(B=\left(-1-\sqrt{5}-2+\sqrt{5}-3-\sqrt{5}\right)\left(\sqrt{5}-6\right)\)

\(B=\left(-\sqrt{5}-6\right)\left(\sqrt{5}-6\right)\)

\(B=-\left(\sqrt{5}+6\right)\left(\sqrt{5}-6\right)\)

\(B=-\left(5-36\right)\)

\(B=-\left(-31\right)\)

\(B=31\)

_____________________________

\(\sqrt{48}-\dfrac{\sqrt{21}-\sqrt{15}}{\sqrt{7}-\sqrt{5}}+\dfrac{2}{\sqrt{3}+1}\)

\(=4\sqrt{3}-\dfrac{\sqrt{3}\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}+\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(=4\sqrt{3}-\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)

\(=3\sqrt{3}-\sqrt{3}+1\)

\(=2\sqrt{3}+1\)

5 tháng 9 2023

a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)

\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)

\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)

\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)

\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)

\(=7-\sqrt{21}+\sqrt{21}-3\)

\(=4\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

ưu tiên phương pháp bình phương :

a) \(\left(4+\sqrt{15}\right)^2\left(\sqrt{10}-\sqrt{6}\right)^2\left(\sqrt{4-\sqrt{15}}\right)^2\)

\(=\left(4+\sqrt{15}\right)^2\left(4-\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)^2\)

Tính ra kết quả nhớ căn đó

b) Phương pháp trục căn thức :

\(\frac{\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}}{\sqrt{3-\sqrt{5}}}-\frac{\sqrt{3-\sqrt{5}}\sqrt{3+\sqrt{5}}}{\sqrt{3+\sqrt{5}}}-\sqrt{2}\)

Trên tử có hàng đẳng thức . bạn tự quy động là ra 

3 tháng 7 2017

mình vẫn chưa hiểu câu a

21 tháng 9 2023

\(a,\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\)

\(=\left|2-\sqrt{5}\right|-\left|1+\sqrt{5}\right|\)

\(=\sqrt{5}-2-\left(1+\sqrt{5}\right)\)

\(=\sqrt{5}-2-1-\sqrt{5}\)

\(=-3\)

\(b,\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{3}-5\right)}{\sqrt{3}-5}+6\cdot\dfrac{\sqrt{4}}{\sqrt{3}}\)

\(=\sqrt{3}+\dfrac{12}{\sqrt{3}}\)

\(=\sqrt{3}+\dfrac{12\sqrt{3}}{3}\)

\(=\sqrt{3}+4\sqrt{3}\)

\(=5\sqrt{3}\)

#\(Toru\)

21 tháng 9 2023

\(\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(1+\sqrt{5}\right)^2}\\ =\left|2-\sqrt{5}\right|-\left|1+\sqrt{5}\right|\\ =\sqrt{5}-2-1-\sqrt{5}\\ =-2-1\\ =-3\)

\(\dfrac{3-5\sqrt{3}}{\sqrt{3}-5}+6\sqrt{\dfrac{4}{3}}\\ =\dfrac{\sqrt{3}\left(\sqrt{3}-5\right)}{\sqrt{3}-5}+4\sqrt{3}\\ =\sqrt{3}+4\sqrt{3}\\ =5\sqrt{3}\)

6 tháng 7 2021

1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)=14\)

2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(=\sqrt{\dfrac{1}{2}\left(8-2\sqrt{3.}\sqrt{5}\right)}+\sqrt{\dfrac{1}{2}\left(8+2.\sqrt{3}.\sqrt{5}\right)}-\sqrt{2}\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\dfrac{1}{2}\left(\sqrt{3}-\sqrt{5}\right)^2}+\sqrt{\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{2}\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\dfrac{\sqrt{2}}{2}\left|\sqrt{3}-\sqrt{5}\right|+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left|\sqrt{5}-1\right|\)

\(=\dfrac{\sqrt{2}}{2}\left(\sqrt{5}-\sqrt{3}\right)+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left(\sqrt{5}-1\right)\)

\(=\sqrt{5}.\sqrt{2}-\sqrt{2}\left(\sqrt{5}-1\right)=\sqrt{2}\)

3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{1-\left(\sqrt{5}\right)^2}\)

\(=\sqrt{20}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)

4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)

\(=\sqrt{\dfrac{4-2\sqrt{3}}{4+2\sqrt{3}}}+\sqrt{\dfrac{4+2\sqrt{3}}{4-2\sqrt{3}}}\)\(=\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}+\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}\)

\(=\dfrac{\left|\sqrt{3}-1\right|}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\left|\sqrt{3}-1\right|}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)

\(=\dfrac{\left(\sqrt{3}-1\right)^2+\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{8}{3-1}=4\)

3: Ta có: \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)

\(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)

\(=2\sqrt{5}-2\left(\sqrt{5}+1\right)\)

=-2

4) Ta có: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}\)

=4

19 tháng 11 2023

a: Sửa đề: \(\sqrt[3]{\left(4-2\sqrt{3}\right)\cdot\left(\sqrt{3}-1\right)}\)

\(=\sqrt[3]{\left(\sqrt{3}-1\right)^2\cdot\left(\sqrt{3}-1\right)}\)

\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}=\sqrt{3}-1\)

b: \(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\)

\(=\sqrt{3+\sqrt{3}+\sqrt[3]{\left(\sqrt{3}\right)^3+3\cdot\left(\sqrt{3}\right)^2\cdot1+3\cdot\sqrt{3}\cdot1^2+1^3}}\)

\(=\sqrt{3+\sqrt{3}+\sqrt[3]{\left(\sqrt{3}+1\right)^3}}\)

\(=\sqrt{3+\sqrt{3}+\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)