K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

a) \(\dfrac{y}{xy-5x^2}-\dfrac{15y-25x}{y^2-25x^2}=\dfrac{y}{x\left(y-5x\right)}-\dfrac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\dfrac{x\left(15y-25x\right)}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y-5x}{x\left(y+5x\right)}\)

29 tháng 11 2022

b: \(=\dfrac{2}{x+2y}-\dfrac{1}{2y-x}+\dfrac{4y}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2x-4y+x+2y+4y}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{3x+2y}{\left(x-2y\right)\left(x+2y\right)}\)

4 tháng 12 2018

kha sdaif dòng mik xin phép trình bày bằng lời ạ :

a) tìm MTC rồi quy đồng lên làm bình thường ại , tử cộng tử mấu giữ nguyên 

b) cx vậy ạ tách mẫu tìm MTC rồi ....

~ hok tốt ~

a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)

b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)

\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)

\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)

c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)

=1/3

d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)

28 tháng 11 2017

3) \(\dfrac{y}{xy-5y^2}-\dfrac{15y-25x}{y^2-25x^2}\) MTC: \(\left(xy-5y^2\right)\left(y^2-25x^2\right)\)

\(=\dfrac{y\left(y^2-25x^2\right)}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}-\dfrac{\left(xy-5y^2\right)\left(15y-25x\right)}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

\(=\dfrac{y\left(y^2-25x^2\right)-\left(xy-5y^2\right)\left(15y-25x\right)}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

\(=\dfrac{\left(y^3-25x^2y\right)-\left(15xy^2-25x^2y-75y^3+125xy^2\right)}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

\(=\dfrac{y^3-25x^2y-15xy^2+25x^2y+75y^3-125xy^2}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

\(=\dfrac{76y^3-140xy^2}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

28 tháng 11 2017

4) \(\dfrac{4-2x+x^2}{2+x}-2-x\)

\(=\dfrac{4-2x+x^2}{2+x}-\dfrac{2+x}{1}\)

\(=\dfrac{4-2x+x^2}{2+x}-\dfrac{\left(2+x\right)\left(2+x\right)}{2+x}\)

\(=\dfrac{4-2x+x^2-\left(2+x\right)\left(2+x\right)}{2+x}\)

\(=\dfrac{4-2x+x^2-\left(2+x\right)^2}{2+x}\)

\(=\dfrac{4-2x+x^2-\left(4+4x+x^2\right)}{2+x}\)

\(=\dfrac{4-2x+x^2-4-4x-x^2}{2+x}\)

\(=\dfrac{-6x}{2+x}\)

27 tháng 11 2017

1) \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}-\dfrac{1}{1-x}+1\)

\(=\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}+\dfrac{1}{x-1}+1\)

\(=\dfrac{x^2}{x+1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x-1}+1\) MTC: \(\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{x^2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2\left(x-1\right)+2x+\left(x+1\right)+\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^3-x^2+2x+x+1+x^2-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)

b) \(\dfrac{1}{x^3-x}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{x^2-1}\)

\(=\dfrac{1}{x\left(x^2-1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\) MTC: \(x\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{x\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1-\left(x+1\right)+2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1-x-1+2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{y}{x\left(y-5x\right)}+\dfrac{25x-15y}{\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y\left(y+5x\right)+25xy-15y^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y^2+5xy+25xy-15y^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y^2+30xy-15y^2}{x\left(y-5x\right)\left(y+5x\right)}\)

14 tháng 12 2017

\(\dfrac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}=\dfrac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}=\dfrac{y-5x}{x\left(y+5x\right)}\)

1 tháng 12 2017

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)

\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

a: =-4xyz^2

b: =-9x^2y

c: =16x^2y^2

d: =1/6x^2y^3

e: =13/6x^3y^2

f: =7/12x^4y

30 tháng 5 2023

a) -xyz² - 3xz.yz

= -xyz² - 3xyz²

= -4xyz²

b) -8x²y - x.(xy)

= -8x²y - x²y

= -9x²y

c) 4xy².x - (-12x²y²)

= 4x²y² + 12x²y²

= 16x²y²

d) 1/2 x²y³ - 1/3 x²y.y²

= 1/2 x²y³ - 1/3 x²y³

= 1/6 x²y³

e) 3xy(x²y) - 5/6 x³y²

= 3x³y² - 5/6 x³y²

= 13/6 x³y²

f) 3/4 x⁴y - 1/6 xy.x³

= 3/4 x⁴y - 1/6 x⁴y

= 7/12 x⁴y