Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý : Phân tích hết ra thành tích các thừa số nguyên tố rồi đặt cái chung ra ngoài
-> rút gọn
-> kết quả
P/S : bài này cx ko dài lắm nhưg lười ^^
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
Phân tích từ số:
\(\frac{2^{12}.3^5-4^2.4^4.3^4}{2^{12}.3.3^5+4^2.4^4.3.3^4}=\frac{1}{6}\)
\(\frac{5^9.5.7^3-5^9.5.7^3.7}{5^9.7^3+5^9.2^3.7^3}=\frac{-10}{3}\)
Sau khi rút gọn là:
\(\frac{1}{6}-\left(-\frac{10}{3}\right)=\frac{1}{6}+\frac{10}{3}=\frac{7}{2}\)
Ta có \(A=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.7^3.2^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^3.2^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{2}{12}-\frac{5\left(-6\right)}{9}\)\(=\frac{1}{6}+\frac{30}{9}=\frac{7}{2}\)
Vậy A=7/2
A = \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)- \(\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^6}\)
= \(\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3.\left(1+2^3\right)}\) = \(\frac{2}{3.4}-\frac{5.\left(-6\right)}{9}\)= \(\frac{1}{6}-\frac{-10}{3}\)= 1/6 + 10/3 = 7/2
=2^12.3^4.(3-1)/2^12.3^5(3+1)-5^10.7^3.(1-7)/5^9.7^3.(1+2^3)
2/3.4-5.(-6)/9
=1/6-(-10/3)
1/6+10/3
7/2
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{2^{12}.3^4.2}{2^{12}.3^5.4}-\frac{5^{10}.7^3\left(-6\right)}{5^9.7^3.9}\)
\(=\frac{1}{6}-\frac{\left(-10\right)}{3}\)
\(=\frac{7}{2}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^5.\left(3-1\right)}{2^{12}.3^6.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3.\left(1+2^3\right)}\)
\(=\frac{2^{12}.3^5.2}{2^{12}.3^6.4}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3.9}\)
\(=\frac{1}{3.2}-\frac{5.\left(-2\right)}{3}\)
\(=\frac{1}{6}-\frac{-10}{3}\)
\(=\frac{1}{6}+\frac{10}{3}\)
\(=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}=\frac{7}{2}\)
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}\) = \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\) = \(\frac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6+3^5\right)}\) = \(\frac{3^5-3^4}{3^5+3^6}\) = \(\frac{243-81}{243+729}\) = \(\frac{1}{6}\)
\(\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\) = \(\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.7^9}\) = \(\frac{5^{10}.\left(7^3.7^4\right)}{5^9.\left(7^3+7^9\right)}\) = \(\frac{5.\left(343+2401\right)}{343+40353607}\) = \(\frac{13720}{40353950}\) = \(\frac{4}{11765}\)
A = \(\frac{1}{6}\) - \(\frac{4}{11765}\) = \(\frac{11741}{70590}\)
Bn tự rút gọn nha
a)
=\(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^5\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{3^5-3^4}{3^6+3^5}-\frac{5\left(7^3-7^4\right)}{7^3.3^2}\)
=\(\frac{3^4\left(3-1\right)}{^{ }3^4\left(9+3\right)}-\frac{5.7^3-5.7^4}{7^3.3^2}\)
=\(\frac{1}{6}-\frac{7^3.5\left(1-7\right)}{7^3.3^2}=\frac{1}{6}-\frac{30}{9}=-\frac{19}{6}\)
Vậy A=\(-\frac{19}{6}\)
câu b lúc nã mk làm sai rui
dây mới đúng
=\(\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{96}-\frac{1}{101}\right)\)
=\(\frac{1}{5}\left(1-\frac{1}{101}\right)=\frac{1}{5}.\frac{100}{101}=\frac{20}{101}\)