Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.100}\right)\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
2*(1/1*3+1/3*5+.......+1/99*100)
=2*(2/1*3+2/3*5+.....+2/99*100)*1/2
=1/3-1/5+1/5-1/7+....+1/99-1/100
=1/3-1/100
=100/300-3/300
=97/300
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2007}-\dfrac{1}{2009}\right)=\dfrac{1}{2}\cdot\dfrac{2008}{2009}=\dfrac{1004}{2009}\)
= 1/2. ( 1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +........+ 1/2013 - 1/2015)
= 1/2 . ( 1- 1/2015)
= 1007/2015
3A = 1.2.3+2.3(4-1)+3.4.(5-2)+.+99.100.(101-98)
3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.+99.100.101-98.99.100
3A = 99.100.101
cho mình **** đi
2S = 2/1.3+1/3.5+2/5.7+...+2/99.100
2S = 1/1-1/3+1/3-1/5+....+1/99-1/100
2S = 1-1/100
2S = 99/100
S = 99/100:2
S = 99/200
ủng hộ mk nhé
= \(\frac{1}{2}x\left(\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}+\frac{1}{100}\right)\)
=\(\frac{1}{2}x\frac{1}{100}=\frac{1}{200}\)
vậy S = \(\frac{1}{200}\)
a)1/5.6+1/6.7+1/7.8+.......+1/99.100
= (1/5-1/6)+(1/6-1/7)+(1/7-1/8)+.....+(1/99-1/100)
= 1/5 - 1/100
= 19/100
b)2/1.3+2/3.5+2/5.7+.........+2/2013.2015
= (1/1-1/3)+(1/3-1/5)+(1/5-1/7)+.....+(1/2013+1/2015)
= 1/1 - 1/2015
= 2014/2015
\(a,\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{99.100}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{5}-\frac{1}{100}=\frac{20}{100}-\frac{1}{100}=\frac{19}{100}\)
\(b,\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\frac{1}{1}-\frac{1}{2015}=\frac{2015}{2015}-\frac{1}{2015}=\frac{2014}{2015}\)