Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Tứ giác nhận được theo nhát cắt của AB là hình thoi vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau.
- Nếu có thêm OA = OB thì hình thoi nhận được có hai đường chéo bằng nhau nên là hình vuông.
Tứ giác nhận được theo nhát cắt AB là hình thoi vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau. Nếu có thêm OA = OB thì hình thoi nhận được có hai đường chéo bằng nhau nên là hình vuông.
Vì \(OM = ON = OP = OQ\) nên \(O\) là trung điểm của \(NQ\) và \(MP\) và \(MP = NQ\)
Xét tứ giác \(MNPQ\) có hai đường chéo \(NQ\) và \(MP\) cắt nhau tại trung điểm \(O\) (cmt)
Suy ra \(MNPQ\) là hình bình hành
Mà \(MP = NQ\) (cmt) nên \(MNPQ\) là hình chữ nhật
Lại có \(MP \bot NQ\) (gt) nên \(MNPQ\) là hình vuông
Sau khi thực hiện theo hướng dẫn, ta được sản phẩm như Hình 9b.
Tứ giác nhận được theo nhát cắt AB là hình thoi vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường và vuông góc với nhau. Nếu có thêm OA = OB thì hình thoi nhận được có hai đường chéo bằng nhau nên là hình vuông.
Vì gấp làm 1 phần tư và cắt 1 nhát kéo thành 1 tam giác nên khi mở ra sẽ là 4 tam giác bằng nhau
=> tứ giác đó có 4 cạnh là 4 cạnh huyền của 4 tam giác bằng nhau nên tứ giác đó có 4 cạnh bằng nhau
=> tứ giác đó là hình thoi
a: Diện tích đáy là \(12^2=144\left(cm^2\right)\)
Thể tích túi quà là: \(\dfrac{1}{3}\cdot144\cdot10=48\cdot10=480\left(cm^3\right)\)
b: Diện tích xung quanh túi quà là:
\(S_{xq}=12\cdot4\cdot12=576\left(cm^2\right)\)
Diện tích cần mua là:
\(576+12^2=720\left(cm^2\right)=0,072\left(m^2\right)\)
Số tiền cần bỏ ra là:
\(0,072\cdot200000=14400\left(đồng\right)\)