Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>0;x\ne4\)
\(A=\left(\dfrac{x}{\sqrt{x}\left(x-4\right)}-\dfrac{6}{3\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}+2}\right):\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+10-x}{\sqrt{x}+2}\right)\)
\(=\left(\dfrac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{6}{\sqrt{x}+2}\right)\)
\(=\dfrac{-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}+2}{6}=\dfrac{6}{2-\sqrt{x}}\)
Để \(A< 2\Rightarrow\dfrac{6}{2-\sqrt{x}}< 2\)
\(\Rightarrow\dfrac{3}{2-\sqrt{x}}-1< 0\Rightarrow\dfrac{\sqrt{x}+1}{2-\sqrt{x}}< 0\)
\(\Rightarrow2-\sqrt{x}< 0\) (do \(\sqrt{x}+1>0;\forall x\in TXĐ\))
\(\Rightarrow x>4\)
a) \(\sqrt{\sqrt{2\sqrt{6}+6+2\sqrt{2}+2\sqrt{3}-\sqrt{5+2\sqrt{6}}}}\)
\(=\sqrt{1+\sqrt{2}+\sqrt{3}-\left(\sqrt{3}+\sqrt{2}\right)}=1\)
b) \(A=\sqrt{x^2-6x+9}-\dfrac{x^2-9}{\sqrt{9-6x+x^2}}\)
\(=\left|x-3\right|-\dfrac{\left(x-3\right)\left(x+3\right)}{\left|x-3\right|}\)
Th1: x-3 < 0
\(A=\left(3-x\right)-\dfrac{\left(x-3\right)\left(x+3\right)}{3-x}=3-x+x-3=0\)
Th2: x-3 > 0
\(A=x-3-\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x-3-\left(x+3\right)=-6\)
c)
Đk: x >/ 1 \(B=\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
\(=\dfrac{\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
\(=\dfrac{\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|}{\left|x-2\right|}\cdot\dfrac{x-2}{\sqrt{x-1}}\)
Th1: \(x-2\ge0\Leftrightarrow x\ge2\)
\(B=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}+1}{x-2}\cdot\dfrac{x-2}{\sqrt{x-1}}=\dfrac{2}{\sqrt{x-1}}\)
Th2: \(x-2\le0\Leftrightarrow x\le2\)
kết hợp với đk, ta được: 1 \< x \< 2
\(=\dfrac{\sqrt{x-1}+1-\sqrt{x-1}-1}{2-x}\cdot\dfrac{x-2}{\sqrt{x-1}}=0\)
d) \(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
chẳng biết có sai sót gì 0 nữa, xin lỗi tớ 0 xem lại đâu vì chán quá!
\(P=\left(\dfrac{x}{x\sqrt{x}-4\sqrt{x}}-\dfrac{6}{3\sqrt{x}-6}+\dfrac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\dfrac{10-x}{\sqrt{x}+2}\right)\)
\(P=\left(\dfrac{\sqrt{x}}{x-4}-\dfrac{2\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}-2}{x-4}\right):\left(\dfrac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(P=\left(\dfrac{-6}{x-4}\right):\left(\dfrac{6}{\sqrt{x}+2}\right)=\dfrac{-1}{\sqrt{x}-2}\)
1. ĐKXĐ: $x>0; x\neq 9$
\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)
2. ĐKXĐ: $x\geq 0; x\neq 4$
\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)
\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)
a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)
\(=\dfrac{2}{3}\)
1. b) \(\left(x\sqrt{\dfrac{6}{x}}+\sqrt{\dfrac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\left(x\sqrt{\dfrac{6x}{x^2}}+\sqrt{\dfrac{6x}{9}}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\left(\sqrt{6x}+\dfrac{1}{3}\sqrt{6x}+\sqrt{6x}\right):\sqrt{6x}\)
=\(\dfrac{7}{3}\sqrt{6x}:\sqrt{6x}=\dfrac{7}{3}\)
2.
P=\(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)(bn có ghi sai đề ko)
a) ĐKXĐ : \(x\ge1,x\ge2,x\ge0\)
b) P=\(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{x-3\sqrt{x}-\sqrt{x}+3-2x+\sqrt{x}+4\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
=\(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
c) thay x= \(4-2\sqrt{3}\)vào P ta có :
\(\dfrac{1}{\sqrt{4-2\sqrt{3}}-2}=\dfrac{1}{\sqrt{3}-1-2}=\dfrac{1}{\sqrt{3}-3}\)
Sửa đề: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{9}{4}\end{matrix}\right.\)
a) Ta có: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{2\cdot\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2x+2\sqrt{x}+\sqrt{x}+1}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b) Ta có: \(x=\dfrac{3-2\sqrt{2}}{4}\)
\(\Leftrightarrow x=\dfrac{2-2\cdot\sqrt{2}\cdot1+1}{4}\)
\(\Leftrightarrow x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào biểu thức \(P=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\), ta được:
\(P=\left(3\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}-5\right):\left(2\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}+1\right)\)
\(\Leftrightarrow P=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(\Leftrightarrow P=\left(\dfrac{3\cdot\left(\sqrt{2}-1\right)}{2}-\dfrac{10}{2}\right):\left(\sqrt{2}-1+1\right)\)
\(\Leftrightarrow P=\dfrac{3\sqrt{2}-3-10}{2}:\sqrt{2}\)
\(\Leftrightarrow P=\dfrac{3\sqrt{2}-13}{2}\cdot\sqrt{2}\)
\(\Leftrightarrow P=\dfrac{6-13\sqrt{2}}{2}\)
Vậy: Khi \(x=\dfrac{3-2\sqrt{2}}{4}\) thì \(P=\dfrac{6-13\sqrt{2}}{2}\)
b) ĐKXĐ : \(x\ne\pm1\)
\(P=\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)-\left(6x-4\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1+2x-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)
a) ĐKXĐ : \(x\ge0;x\ne16\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x-4}}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{x-16}:\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{x+16}{x-16}:\dfrac{x+16}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{x-16}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
\(\left(\dfrac{6x+4\sqrt{x}}{x\sqrt{x}-4\sqrt{x}}-\dfrac{6}{3\sqrt{x}+6}+1\right):\dfrac{1}{\sqrt{x}-2}\)
\(=\left(\dfrac{2\sqrt{x}\left(3\sqrt{x}+2\right)}{\sqrt{x}\left(x-4\right)}-\dfrac{6}{3\left(\sqrt{x}+2\right)}+1\right):\dfrac{1}{\sqrt{x}-2}\)
\(=\left(\dfrac{2\left(3\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2}{\sqrt{x}+2}+1\right):\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{6\sqrt{x}+4-2\left(\sqrt{x}-2\right)+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-2}{1}\)
\(=\dfrac{x+6\sqrt{x}-2\sqrt{x}+4}{\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)}\)
\(=\sqrt{x}+2\)