Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\sqrt{11-6\sqrt{2}}+\sqrt{3-2\sqrt{2}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{2}+2}+\sqrt{2-2\cdot\sqrt{2}\cdot1+1}\)
\(=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}\)
\(=\left|3-\sqrt{2}\right|+\left|\sqrt{2}-1\right|\)
\(=3-\sqrt{2}+\sqrt{2}-1\)
=3-1=2
Lời giải:
a.
\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)
$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$
$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$
b.
$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$
$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$
$=|\sqrt{3}-3|+|\sqrt{3}+3|$
$=(3-\sqrt{3})+(\sqrt{3}+3)=6$
c.
$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$
$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$
$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$
1: =3+căn 2-3+căn 2
=2căn 2
2: =(căn 3-2)(căn 3+2)
=3-4=-1
\(P=A:B=\dfrac{1-\sqrt{x}}{\sqrt{x}-2}:\dfrac{2\sqrt{x}}{\sqrt{x}-2}=\dfrac{1-\sqrt{x}}{2\sqrt{x}}\)
Có: \(\left|P+1\right|< 3P\left(ĐK:x>0\right)\)
\(\Leftrightarrow\left|\dfrac{1-\sqrt{x}}{2\sqrt{x}}+1\right|< 3.\dfrac{1-\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\) nên:
\(\left|\dfrac{\sqrt{x}+1}{2\sqrt{x}}\right|< \dfrac{3-3\sqrt{x}}{2\sqrt{x}}\\ \Leftrightarrow\dfrac{\sqrt{x}+1-3+3\sqrt{x}}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{4\sqrt{x}-2}{2\sqrt{x}}< 0\\ \Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}}< 0\\ \Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\2\sqrt{x}-1< 0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow0< x< \dfrac{1}{4}\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{5-2\sqrt{6}}-\sqrt{11-4\sqrt{6}}\right)=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{2}-\sqrt{3}\right)^2}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-\sqrt{2}-2\sqrt{2}+\sqrt{3}\right)=\dfrac{1}{\sqrt{2}}\left(2\sqrt{3}-3\sqrt{2}\right)\)
\(=\sqrt{6}-3\)
\(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}-\sqrt{2}=\frac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}-2}{\sqrt{2}}=\frac{\sqrt{11}+1-\left(\sqrt{11}-1\right)-2}{\sqrt{2}}=0\)
\(C=\sqrt{9-2\cdot3\sqrt{2}+2}-\sqrt{9+2\cdot3\cdot\sqrt{2}+2}\)
\(C=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(3+\sqrt{2}\right)^2}\)
\(C=3-\sqrt{2}-\left(3+\sqrt{2}\right)=-2\sqrt{2}\)