Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(1-\tan^2x\right)^2}{4\tan^2x}-\frac{1}{4\sin^2x.\cos^2x}\)
\(=\frac{1}{\tan^22x}-\frac{1}{\sin^22x}\)
\(=\frac{\cos^22x}{\sin^22x}-\frac{1}{\sin^22x}\)
\(=\frac{\cos^22x-1}{\sin^22x}=\frac{-\sin^22x}{\sin^22x}=-1\)
Vậy A không phụ thuộc vào x
Tự chứng minh từng cái này rồi suy ra cái đó nhé b.
Ta có: \(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}-sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}\)
Tương tự ta suy ra:
\(sin\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}sin\frac{B}{2}cos\frac{C}{2}+cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}=sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}+3sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}\left(1\right)\)
Tiếp theo chứng minh:
\(2sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2}=\frac{cosA+cosB+cosC-1}{2}\left(2\right)\)
\(sin^2\frac{A}{2}+sin^2\frac{B}{2}+sin^2\frac{C}{2}=\frac{3}{2}-\frac{cosA+cosB+cosC}{2}\left(3\right)\)
\(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\left(4\right)\)
Từ (1), (2), (3), (4) suy được điều phải chứng minh
1) \(\left(\tan\alpha+\cot\alpha\right)^2-\left(\tan\alpha-\cot\alpha\right)^2\)
= \(\tan^2\alpha+\cot^2\alpha+2\tan\alpha.\cot\alpha-\tan^2\alpha+2\tan\alpha.\cot\alpha-\cot^2\alpha\)
= \(4\tan\alpha.\cot\alpha\)
= \(4.\frac{\cos\alpha}{\sin\alpha}.\frac{\sin\alpha}{\cos\alpha}=4\)
2) \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}\)
= \(\frac{4-2-\sqrt{2+\sqrt{2}}}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)
= \(\frac{1}{\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)
Mặt khác: \(\sqrt{2}< 2\Rightarrow2+\sqrt{2}< 4\Rightarrow2+\sqrt{2+\sqrt{2}}< 2+\sqrt{4}=4\)
=> \(2+\sqrt{2+\sqrt{2+\sqrt{2}}}< 2+\sqrt{4}=4\)
=> \(\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>\frac{1}{4}\)
=> \(\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}>\frac{1}{4}\)