K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

Ta thấy:\(n\ge1\)

Với \(n=1\Rightarrow n^2+n^5+1=3\)là số ngto

Với \(n>1\Rightarrow n^7+n^5+1=\left(n^2+n+1\right)\left(n^5-n^4+n^3-n+1\right)>n^2+n+1\)\(>1\)

\(\Rightarrow n^2+n+1\)là ước của \(n^7+n^5+1\)(loại)

\(\Leftrightarrow n=1\)

Vậy n=1 thì n7+n5+1 là số ngto

bài dễ òm nhưng không biết làm :)

1 tháng 9 2020

(p là số nguyên tố)

TH1: n-2 =1 và 2n-5 =p

n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)

TH2: 2n-5=1 và n-2=p

2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(Loại)

TH3: 2n-5=-1 và n-2 = - p 

2n-5=-1=>n=2 . Thay n=2  vào n-2=1=> A không là số nguyên tố (loại)

TH4: n-2=-1 và 2n-5 =-p

n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (NHẬN)

1 tháng 9 2020

Mèo không hiểu lắm, còn cách nào khác không, hoặc là làm chi tiết hơn

1 tháng 11 2017

Ta thấy \(n\ge1\)

với \(n=1\Rightarrow n^2+n^5+1=3\)là số nguyên tố

Với n > 1

Ta có  \(n^7+n^5+1=\left(n^2+n+1\right)\left(n^5-n^4+n^3-n+1\right)>n^2+n+1>1\)

\(\Rightarrow n^2+n+1\)là ước của\(n^7+n^5+1\)( loại)

\(\Leftrightarrow n=1\)

2 tháng 11 2017

Dễ thấy : 
<br class="Apple-interchange-newline"><div id="inner-editor"></div>n1

Với n=1 => n7+n5+1=3 là số nguyên tố

Với n>1

Ta có n7+n5+1=(n2+n+1)(n5-n4+n3-n+1) >  n2+n+1 > 1

=> n2+n+1 là ước của n7+n5+1(loại)

Vậy n=1