Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A
a) dễ chứng minh tam giác HBA đồng dạng với tam giác ABC
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\left(1\right)\Rightarrow AB^2=BH\cdot BC\)
b) Xét \(\Delta ABH\)có
BD là đường phân giác của \(\Delta ABH\)
suy ra \(\frac{DH}{DA}=\frac{BH}{AB}\left(2\right)\)
Xét \(\Delta ABC\)có
BE à đường phân giác của \(\Delta ABC\)
suy ra \(\frac{EA}{EC}=\frac{AB}{BC}\left(3\right)\)
từ 1,2,3 suy ra đpcm
a. xét tam giác AHB và tam giác ABC có:
góc H= góc A=90o
góc B chung
-> tam giác AHB~tam giác ABC (g.g)
b. thiếu đề rồi bạn.
a: Xet ΔHAB và ΔHCA có
góc HAB=góc HCA
góc AHB=góc CHA
=>ΔHAB đồg dạng với ΔHCA
b: \(HB=\sqrt{4.5^2-3.6^2}=2.7\left(cm\right)\)
BC=4,5^2/2,7=7,5cm
c: Xét ΔCMN vuông tại M và ΔCAB vuông tại A có
góc C chung
=>ΔCMN đồng dạng với ΔCAB
=>CM/CA=CN/CB
=>CM*CB=CA*CN
=>AB*BN=1/2*BC^2