K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

\(\text{GIẢI :}\)

ĐKXĐ : \(x\ne1,\text{ }x\ne-2\).

\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(\text{-}x\right)\)

\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=\frac{x\left(x-1\right)}{x-1}+\left(\text{-}x\right)\)

\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=x+\left(\text{-}x\right)\)

\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=0\)

\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}=0\)

\(\Rightarrow2\left(x+2\right)+\left(x-1\right)=0\)

\(\Leftrightarrow2x+4+x-1\)

\(\Leftrightarrow3x+3=0\)

\(\Leftrightarrow3x=\text{-3}\Leftrightarrow x=\text{-1}\)

Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1\right\}\).

24 tháng 5 2020

\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(-x\right)\left(đk:x\ne1;-2\right)\)

\(\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x\left(x-1\right)}{x-1}-x\)

\(< =>\frac{2x+4+x-1}{\left(x-1\right)\left(x+2\right)}=x-x=0\)

\(< =>2x+4+x-1=0\)

\(< =>3x=1-4=-3\)

\(< =>x=\frac{-3}{3}=-1\left(tmđk\right)\)

Vậy nghiệm của phương trình trên là \(\left\{-1\right\}\)

16 tháng 8 2016

a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\)                               ĐKXĐ : x #0, x#2, x#-2

<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)

<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)

=> 10 - 2x + 7x - 14 = 4x - 4 + x

<=>-2x + 7x - 4x + x  = -4 - 10 + 14

<=>x=-14

6 tháng 2 2017

1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~

\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)

6 tháng 2 2017

Mấy bài kia sao cái phương trình dài thê,s giải sao nổi

2 tháng 4 2017

\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)

\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)

\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)

\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)

\(\Leftrightarrow-x\le11\)

\(\Leftrightarrow x\le-11\)

2 tháng 4 2017

biết đừng đăng anh à

27 tháng 6 2016

oho

12 tháng 7 2023

Mày nhìn cái chóa j

1 tháng 3 2020

\(x-\frac{\frac{x}{2}-\frac{3+x}{4}}{2}=3-\frac{\left(1-\frac{6-x}{3}\right).\frac{1}{2}}{2}\)

\(\Leftrightarrow2x-\frac{x}{2}+\frac{3+x}{4}=6-\frac{1}{2}+\frac{6-x}{6}\)

\(\Leftrightarrow24x-6x+9+3x=72-6+12-2x\)

\(\Leftrightarrow23x=69\)

\(\Leftrightarrow x=3\)

Vậy nghiệm của pt x=3

22 tháng 2 2017

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{\left(x+3\right)-x}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Rightarrow x\left(x+3\right)=10=2.\left(2+3\right)\)

\(\Rightarrow x=2\)

22 tháng 2 2017

pt <=> \(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}=\frac{3}{10}\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}=\frac{3}{10}\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

7 tháng 4 2018

- Các bạn bỏ giùm mình số 2 cuối nhé. Chỉ có 1 số 2 thôi.

8 tháng 4 2018

\(\frac{x+2}{x+1}-\frac{3}{2-x}=\frac{-3}{\left(x+1\right)\left(x-2\right)}+2\)(1)

ĐKXĐ : \(x\ne-1;x\ne\pm2\)

Quy đồng và khử mẫu phương trình (1) , ta được :

\(\left(x+2\right)\left(2-x\right)\left(x-2\right)-3\left(x+1\right)\left(x-2\right)=-3\left(2-x\right)+2\left(x+1\right)\left(x-2\right)\left(2-x\right)\)

\(\Leftrightarrow-\left(x+2\right)\left(x-2\right)^2-3\left(x^2-x-2\right)=-6+3x-2\left(x+1\right)\left(x^2-4x+4\right)\)

\(\Leftrightarrow-\left(x-2\right)\left(x^2-4\right)-3x^2+3x+6=-6+3x-2\left(x^3-3x^2+4\right)\)

\(\Leftrightarrow-x^3+2x^2+4x-8-3x^2+3x+6=-6+3x-2x^3+6x^2-8\)

\(\Leftrightarrow-x^3-x^2+7x-2+6-3x+2x^3-6x^2+8=0\)

\(\Leftrightarrow x^3-7x^2+4x+12=0\)

\(\Leftrightarrow x^3-2x^2-5x^2+10x-6x+12=0\)

\(\Leftrightarrow x^2\left(x-2\right)-5x\left(x-2\right)-6\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x-6x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x\left(x+1\right)-6\left(x+1\right)\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=2\)(loại) ; \(x=6\)(chọn ) ; \(x=-1\)(loại).

Vậy S={6}.