K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2020

Tao Không biết làm

13 tháng 9 2020

Mài cũng có não mà done

Trước hết ta cần chứng minh BĐT :

\(a^4+b^4\ge ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^4-a^3b+b^3-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\) ( đúng )

Áp dụng BĐT trên vào bài toán ta có :

\(\sum\frac{ab}{a^4+b^4+1}\le\sum\frac{ab}{ab\left(a^2+b^2\right)+abc}=\sum\frac{1}{a^2+b^2+c}\le\sum\frac{1}{2ab+\frac{1}{ab}}\le\sum\frac{1}{2\sqrt{ab.\frac{1}{ab}}+ab}=\sum\frac{1}{2+1}=1\)

Vậy BĐT đã được chứng minh . Dấu \("="\) xảy ra khi \(a=b=c=1\)

@Trần Thanh Phương; @Lê Thị Thục Hiền @No choice teen

NV
16 tháng 9 2019

\(3=a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left(ab+bc+ca\right)^2}{3}\)

\(\Rightarrow ab+bc+ca\le3\)

Đặt \(\left(ab;bc;ca\right)=\left(x;y;z\right)\Rightarrow x+y+z\le3\)

Ta cần chứng minh \(\frac{1}{4-x}+\frac{1}{4-y}+\frac{1}{4-z}\le1\)

Dễ dàng chứng minh \(\frac{1}{4-x}\le\frac{x+2}{9}\) với \(0< x< 3\)

Thật vậy, BĐT \(\Leftrightarrow9\le\left(x+2\right)\left(4-x\right)\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\) (luôn đúng)

Tương tự ta có \(\frac{1}{4-y}\le\frac{y+2}{9}\) ; \(\frac{1}{4-z}\le\frac{z+2}{9}\)

Cộng vế với vế: \(VT\le\frac{x+y+z+6}{9}\le\frac{3+6}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
5 tháng 5 2020

Ta có đánh giá sau:

Với \(0< x< \sqrt{3}\) ta luôn có: \(\frac{1}{4-x}\le\frac{x^2+5}{18}\)

Thật vậy, BĐT tương đương:

\(\left(x^2+5\right)\left(4-x\right)\ge18\)

\(\Leftrightarrow-x^3+4x^2-5x+2\ge0\)

\(\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\) (luôn đúng với \(x\in\left(0;\sqrt{3}\right)\))

Do \(3=a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\Rightarrow0< ab;bc;ca< \sqrt{3}\)

Áp dụng ta có: \(\frac{1}{4-ab}\le\frac{a^2b^2+5}{18}\) ; \(\frac{1}{4-bc}\le\frac{b^2c^2+5}{18}\) ; \(\frac{1}{4-ca}\le\frac{c^2a^2+5}{18}\)

Cộng vế với vế:

\(VT\le\frac{a^2b^2+b^2c^2+c^2a^2+15}{18}\le\frac{3+15}{18}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

7 tháng 6 2019

\(VT\leΣ\frac{1}{a^2+b^2+1}\le\frac{a^2+b^2+c^2+6}{\left(a+b+c\right)^2}\le\frac{\left(Σa\right)^2}{\left(Σa\right)^2}=1=VP\)

8 tháng 6 2019

Bạn giải rõ ra được không

28 tháng 3 2019

Cosi + Svac-xơ

Có : \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)

\(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le\frac{1}{4-\frac{a+b}{2}}+\frac{1}{4-\frac{b+c}{2}}+\frac{1}{4-\frac{c+a}{2}}\)

\(=-\left(\frac{1}{\frac{a+b}{2}-4}+\frac{1}{\frac{b+c}{2}-4}+\frac{1}{\frac{c+a}{2}-4}\right)\le\frac{-\left(1+1+1\right)^2}{a+b+c-12}=\frac{-9}{3-12}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

1 tháng 5 2020

hơi phiền bn,bn có thẻ chỉ mik k ?

NV
11 tháng 6 2020

\(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2=\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)

\(\Rightarrow VT\le\frac{ab}{ab\left(a^2+b^2\right)+ab}+\frac{bc}{bc\left(b^2+c^2\right)+bc}+\frac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

\(VT\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{xz\left(z+x\right)+xyz}\)

\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

27 tháng 5 2021

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\left(a,b,c>0\right)\).

Với \(a,b>0\), ta có:

\(\left(a-1\right)^2\left(a^2+a+1\right)\ge0\).

\(\Leftrightarrow\left(a^3-1\right)\left(a-1\right)\ge0\).

\(\Leftrightarrow a^4-a^3-a+1\ge0\).

\(\Leftrightarrow a^4-a^3+1\ge a\).

\(\Leftrightarrow a^4-a^3+ab+2\ge ab+a+1\).

\(\Leftrightarrow\sqrt{a^4-a^3+ab+2}\ge\sqrt{ab+a+1}\).

\(\Rightarrow\frac{1}{\sqrt{a^4-a^3+ab+2}}\le\frac{1}{\sqrt{ab+a+1}}\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow a-1=0\Leftrightarrow a=1\).

Chứng minh tương tự (với \(b,c>0\)), ta được:

\(\frac{1}{\sqrt{b^4-b^3+bc+2}}\le\frac{1}{\sqrt{bc+b+1}}\left(2\right)\).

Dấu bằng xảy ra \(\Leftrightarrow b=1\).

Chứng minh tương tự (với \(a,c>0\)), ta được:

\(\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\frac{1}{\sqrt{ca+a+1}}\left(3\right)\)

Dấu bằng xảy ra \(\Leftrightarrow c=1\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\left(4\right)\).

Áp dụng bất đẳng thức Bu-nhi-a-cốp-xki cho 3 số, ta được:

\(\left(1.\frac{1}{\sqrt{ab+a+1}}+1.\frac{1}{\sqrt{bc+b+1}}+1.\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le\)\(\left(1^2+1^2+1^2\right)\)\(\left[\frac{1}{\left(\sqrt{ab+a+1}\right)^2}+\frac{1}{\left(\sqrt{bc+b+1}\right)^2}+\frac{1}{\left(\sqrt{ca+c+1}\right)^2}\right]\).

\(\Leftrightarrow\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\)\(\le3\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)\).

Ta có:

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)

\(=\frac{c}{abc+ac+c}+\frac{abc}{bc+b+abc}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{abc}{b\left(c+1+ac\right)}+\frac{1}{ca+c+1}\)(vì \(abc=1\)).

\(=\frac{c}{1+ac+c}+\frac{ac}{1+ac+c}+\frac{1}{1+ac+c}=1\).

Do đó:

\(\left(\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\right)^2\le3.1=3\).

\(\Leftrightarrow\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\le\sqrt{3}\left(5\right)\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\)\(\sqrt{3}\)(điều phải chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\).

Vậy \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\)\(\le\sqrt{3}\)với \(a,b,c>0\)và \(abc=1\).

\(+2\)nhé, không phải \(-2\)đâu.