Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0,5^{3x-1}>0,25\)
\(\Leftrightarrow0,5^{3x-1}>0,5^2\)
\(\Leftrightarrow3x-1< 2\)
\(\Leftrightarrow3x< 3\)
\(\Leftrightarrow x< \dfrac{3}{3}\)
\(\Leftrightarrow x< 1\)
Vậy: \(\left(-\infty;1\right)\)
Chọn A
Ta có:
\(f'\left(x\right)=6x^2-2x\\ g'\left(x\right)=3x^2+x\)
Theo đề bài, ta có:
\(f'\left(x\right)>g'\left(x\right)\\ \Leftrightarrow6x^2-2x>3x^2+x\\ \Leftrightarrow3x^2-3x>0\\ \Leftrightarrow3x\left(x-1\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)
Vậy tập nghiệm của bất phương trình là \(\left(-\infty;0\right)\cup\left(1;+\infty\right)\)
Chọn D.
Bài 1:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2\left|x\right|+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2x+1}{3x-1}=\lim\limits_{x\rightarrow-\infty}\frac{-2+\frac{1}{x}}{3-\frac{1}{x}}=-\frac{2}{3}\)
\(b=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{9+\frac{1}{x}+\frac{1}{x^2}}-\sqrt{4+\frac{2}{x}+\frac{1}{x^2}}}{1+\frac{1}{x}}=\frac{\sqrt{9}-\sqrt{4}}{1}=1\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x}+\frac{3}{x^2}}+4+\frac{1}{x}}{\sqrt{4+\frac{1}{x^2}}+\frac{2}{x}-1}=\frac{1+4}{\sqrt{4}-1}=5\)
\(d=\lim\limits_{x\rightarrow+\infty}\frac{\frac{3}{x}-\frac{2}{x\sqrt{x}}+\sqrt{1-\frac{5}{x^3}}}{2+\frac{4}{x}-\frac{5}{x^2}}=\frac{1}{2}\)
Bài 2:
\(a=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{1}{x}}{1-\frac{1}{x}}=2\)
\(b=\lim\limits_{x\rightarrow-\infty}\frac{2+\frac{3}{x^3}}{1-\frac{2}{x}+\frac{1}{x^3}}=2\)
\(c=\lim\limits_{x\rightarrow+\infty}\frac{x^2\left(3+\frac{1}{x^2}\right)x\left(5+\frac{3}{x}\right)}{x^3\left(2-\frac{1}{x^3}\right)x\left(1+\frac{4}{x}\right)}=\frac{15}{+\infty}=0\)
\(\Delta y=4\sqrt{2\left(x+\Delta x\right)-6}-4\sqrt{2x-6}=\frac{8\Delta x}{\sqrt{2x+2\Delta x-6}+\sqrt{2x-6}}\)
\(f'\left(x\right)=\lim\limits_{\Delta\rightarrow0}\frac{\Delta y}{\Delta x}=\lim\limits_{\Delta x\rightarrow0}\frac{8\Delta x}{\Delta x\left(\sqrt{2x+2\Delta x-6}+\sqrt{2x-6}\right)}\)
\(=\lim\limits_{\Delta x\rightarrow0}\frac{8}{\sqrt{2x+2\Delta x-6}+\sqrt{2x-6}}=\frac{8}{2\sqrt{2x-6}}=\frac{4}{\sqrt{2x-6}}\)
b/ \(f'\left(5\right)=\frac{4}{\sqrt{2.5-6}}=2\) ; \(f\left(5\right)=4\sqrt{2.5-6}=8\)
Pt tiếp tuyến: \(y=2\left(x-5\right)+8=2x-2\)
c/ \(f'\left(x\right)>4\Leftrightarrow\frac{4}{\sqrt{2x-6}}>4\Leftrightarrow\frac{1}{\sqrt{2x-6}}>1\)
\(\Leftrightarrow\sqrt{2x-6}< 1\Leftrightarrow2x-6< 1\Rightarrow x< \frac{7}{2}\)
\(\Rightarrow3< x< \frac{7}{2}\)
\(\log_{\dfrac{1}{4}}x>-2\\ \Rightarrow\left\{{}\begin{matrix}x>0\\\log_{\dfrac{1}{4}}x>\log_{\dfrac{1}{4}}16\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 16\end{matrix}\right.\\ \Leftrightarrow0< x< 16\)
Chọn C.