Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
f ( t ) = t ( t 2 + 3 + 1 ) ⇒ f ' ( t ) = t 2 + 3 + 1 + t t t 2 + 3 > 0 ∀ t ( x + 2 ) ( ( x + 2 ) 2 + 3 + 1 ) > − x ( x 2 + 3 + 1 ) ⇔ ( x + 2 ) ( ( x + 2 ) 2 + 3 + 1 ) > − x ( ( − x ) 2 + 3 + 1 ) ⇔ f ( x + 2 ) > f ( − x ) ⇔ x + 2 > − x ⇔ x > − 1
Đáp án C
Dựa vào đáp án, ta thấy rằng
(1) Đường thẳng f x = 0 ⇔ 3 2 x - 2 . 3 x = 0 ⇔ 3 x = 2 ⇔ x = log 3 2 ⇒ 1 đúng.
(2) Bất phương trình f x ≥ - 1 ⇔ 3 2 x - 2 . 3 x + 1 ≥ 0 ⇔ 3 x - 1 2 ≥ 0 , ∀ x ∈ ℝ . Nên f x ≥ - 1 có vô số nghiệm ⇒ 2 sai.
(3) Bất phương trình f x ≥ 0 ⇔ 3 x 2 - 2 . 3 x ≥ 0 ⇔ 3 x ≥ 2 ⇔ x ≥ log 3 2 ⇒ 3 sai.
(4) Đường thẳng f(x) = 0 chỉ có 1 nghiệm duy nhất ⇒ 4 sai
Đáp án A
Điều kiện: x ≥ − 1 ta có hệ phương trình:
x + 1 < 2 x x + 4 < 2 x 2 + 3 ⇔ 2 x 2 − x − 1 < 0
nên ta có lập luận sau
Vế phải bất phương trình:
g x = 6 x 2 − 3 x − 3 = 3 2 x 2 − x − 1 ⇒ g x > 0 ⇔ x ∈ − ∞ ; − 1 2 ∪ 1 ; + ∞ g x ≤ 0 ⇔ x ∈ − 1 2 ; 1
+) Với x>1 thì:
0 < x + 4 < 2 x 2 + 3 0 < x + 1 < 2 x ⇒ x + 4 x + 1 < 2 x 2 x 2 + 3 ⇒ V T < 0 , V P > 0 ⇒ B P T v ô n g h i ệ m .
Vật tập nghiệm của bất phương trình là:
a ; b = − 1 2 ; 1 ⇒ 2 a + b = 2. − 1 2 + 1 = 0