Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x - 3|2 luôn luôn lớn hơn hoặc bằng 0 với mọi x
|x - 3| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà |x - 3|2 + |x - 3| = 0
Suy ra : \(\hept{\begin{cases}\left|x-3\right|^2=0\\\left|x-3\right|=0\end{cases}}\) \(\Rightarrow\left|x-3\right|=0\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
3/ bạn lập bảng xét dấu là sẽ thấy có 4 trường hợp:
TH1: x<(-5/6), khi đó: -(2x+1)+[-(3-4x)]+[-(6x+5)]=2014
-2x-1-3+4x-6x-5=2014
-4x-9=2014
x=-2023/4 ( TM x<-5/6)
TH2: -5/6<=x<=-1/2, khi đó: 2x+1+[-(3-4x)]+[-(6x+5)]=2014
2x+1-3+4x-6x-5=2014
0x-7=2014 ( ko có giá trị x TM pt)
TH3:-1/2<=x<=3/4, khi đó: 2x+1+(3-4x)+[-(6x+5)]=2014
2x+1+3-4x-6x-5=2014
-8x-1=2014
x=-2015/8 ( ko TM -1/2<=x<=3/4 )
TH4: x>3/4; khi đó: 2x+1+3-4x+6x+5=2014
4x+9=2014
x=2005/4( TM x>3/4)
thế là xong. cái nào TM thì lấy
ghi chú <= là nhỏ hơn hoặc bằng
Ta có : a mũ chẵn \(\ge\)0.
=>\(2\times y-8=0\)
=> 2 x y = 8
=> y = 4
Ta có : 2x-y = 0.
=> 2x=y=8
=>x= 4
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi