Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2^{n-1}⋮259\)
=> \(2^{n-1}\) thuộc B (259) = {0;259;...}
Mà n nhỏ nhất => n = 0
Ta có 2n - 1 chia hết cho 259
2n - 1 là B(259) = {0; 259; .....}
Mà n nhỏ nhất => 2n - 1 = 0
2n = 1 => n = 0
Vậy n nhỏ nhất là 0
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
+) Với p=3k+1
Ta có : 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số)
=>\(p\ne3k+1\)
+) Với p=3k+2
Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5
Vì \(p\ne3k+1\) nên ta chộn trường hợp này
=> 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9=3(4k+3) (chia hết cho 3)
Vậy 4p+1 là hợp số
=>đpcm
Vào đây nhé bạn: Câu hỏi của Công chúa Fine - Toán lớp 7 | Học trực tuyến
1/ 76; 104
2/ 2,3
3/ 10
4/ a+b = 34,4
5/ x+y= 0,7
6/ a.b= 17,28
7/ -2,5
8/ 2
9/ -1,7
10/ 11
Violympic toán vòng 5 đúng không? Mk làm hết rồi
Câu 1: Theo bài ta có: \(\frac{a}{-2,4}=\frac{b}{3,8}\) và 2a + b = -6
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{-2,4}=\frac{b}{3,8}=\frac{2a}{-4,8}=\frac{b}{3,8}=\frac{-6}{-4,8+3,8}=\frac{-6}{-1}=6\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=6.\left(-2,4\right)\\b=6.3,8\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=-14,4\\b=22,8\end{array}\right.\)
=> a + b = -14,4 + 22,8 = 8,4
Câu 2: Theo bài ta có: \(\frac{a}{3}=\frac{b}{5}\) và 3a - b =17,2
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{3a}{9}=\frac{b}{5}=\frac{3a-b}{9-5}=\frac{17,2}{4}=4,3\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=4,3.3\\b=4,3.5\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=12,9\\b=21,5\end{array}\right.\)
=> a + b = 12,9 + 21,5 = 34,4
Câu 6: Theo bài ta có: \(\frac{a}{3}=\frac{b}{4}\) => \(\frac{a^2}{9}=\frac{b^2}{16}\)
và a2 + b3 = 36
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\) = 1,44
\(\Rightarrow\left[\begin{array}{nghiempt}a^2=12,96\\b^2=23,04\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=\sqrt{12,96}=3,6;a=-\sqrt{12,96}=-3,6\\b=\sqrt{23,04}=4,8;b=-\sqrt{23,04}=-4,8\end{array}\right.\)
\(\Rightarrow\) a . b = 3,6 . 4,8 = -3,6 . (-4,8) = 17,28
Vậy giá trị a . b = 17,28
Theo đề bài, các phần tử đều chia hết cho 2 và 5 -> các phần tử đó phải có tận cùng bằng 0.
-> Số lớn nhất trong tập hợp đó là : 110 (vì các số tự nhiên bé hơn 120)
và số bé nhất trong tập hợp đó là : 0
-> Số phần từ của tập hợp là : (110-0) : 10 + 1 = 12 (phần tử)
12