Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Gọi số cần tìm là a = a 1 a 2 a 3 a 4 a 5 ¯ a i ≠ 0 Do a ⋮ 3 nên a 1 + a 2 + a 3 + a 4 + a 5 ⋮ 3
Nếu a 1 + a 2 + a 3 + a 4 ⋮ thì a 5 = 0 hoặc a 5 = 3
Nếu a 1 + a 2 + a 3 + a 4 chia 3 dư 1 thì a 5 = 2 hoặc a 5 = 5 .
Nếu a 1 + a 2 + a 3 + a 4 chia 3 dư 2 thì a 5 = 1 hoặc a 5 = 4 .
Như vậy, từ một số có 4 chữ số a 1 a 2 a 3 a 4 (các số được lấy từ tập A) sẽ tạo được 2 số tự nhiên có 5 chữ số thỏa mãn yêu cầu bài toán.
Dễ thấy từ các chữ số của tập A có thể lập được 5.6.6.6 = 1080 số tự nhiên có 4 chữ số.
Do đó từ các chữ số của tập A sẽ lập được 2.1080 = 2160 số chia hết cho 3 có 5 chữ số.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Chọn đáp án B
Phương pháp
Chia các TH sau:
TH1: a<b<c.
TH2: a=b<c.
TH3: a<b=c.
TH4: a=b=c.
Cách giải
Gọi số tự nhiên có 3 chữ số là a b c ¯ (0≤a,b,c≤9, a≠0).
=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900
Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.
TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3 số thỏa mãn.
TH2: a=b<c, có C 9 2 số thỏa mãn.
TH3: a<b=c có C 9 2 số thỏa mãn.
TH4: a=b=c có 9 số thỏa mãn.
⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165
Vậy P ( A ) = 11 60 .