K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

\(\Leftrightarrow\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\sin^2x}=2\)

\(\Leftrightarrow\sin^4x-\cos^4x=2\sin^2x\cos^2x\)

\(\Leftrightarrow\left(\sin^2x-\cos^2x\right)\left(\sin^2x+\cos^2x\right)=2\sin^2x\cos^2x\)

\(\Leftrightarrow-2\left(\cos^2x-\sin^2x\right)=4\sin^2x\cos^2x\)

\(\Leftrightarrow-2\cos2x=\sin^22x=1-\cos^22x\)

\(\Leftrightarrow\cos^22x-2\cos2x-1=0\)

Giải PT bậc 2 tìm cosx từ đó suy ra x ban tự làm nốt nhé

NV
3 tháng 10 2020

ĐKXĐ: ...

a.

\(tan^2\left(2x-\frac{\pi}{4}\right)=3\Leftrightarrow\left[{}\begin{matrix}tan\left(2x-\frac{\pi}{4}\right)=\sqrt{3}\\tan\left(2x-\frac{\pi}{4}\right)=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=\frac{\pi}{3}+k\pi\\2x-\frac{\pi}{4}=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

b.

\(\Leftrightarrow tan^2x+cot^2x-2=0\)

\(\Leftrightarrow\left(tanx-cotx\right)^2=0\)

\(\Leftrightarrow tanx=cotx=tan\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow x=\frac{\pi}{2}-x+k\pi\)

\(\Leftrightarrow...\)

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

NV
13 tháng 2 2020

ĐKXĐ: ...

\(\Leftrightarrow tan^2x+cot^2x-2+\frac{2}{sin2x}-2=0\)

\(\Leftrightarrow\left(tanx-cotx\right)^2+2\left(\frac{1-sin2x}{sin2x}\right)=0\)

\(\Leftrightarrow\left(\frac{sin^2x-cos^2x}{sinx.cosx}\right)^2+\frac{\left(sinx-cosx\right)^2}{sinx.cosx}=0\)

\(\Leftrightarrow\left(sinx-cosx\right)^2\left(sinx+cosx\right)^2+sinx.cosx\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(sinx-cosx\right)^2=0\\\left(sinx+cosx\right)^2=-sinx.cosx\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow1+3sinx.cosx=0\)

\(\Leftrightarrow1+\frac{3}{2}sin2x=0\)

\(\Leftrightarrow sin2x=-\frac{2}{3}\)

Có vẻ hơi xấu, bạn xem lại các bước biến đổi có nhầm lẫn hệ số chỗ nào ko, về cơ bản thì cách làm như vậy

13 tháng 2 2020

ko nhầm đâu, về cơ bản thì nó xấu sẵn mà

27 tháng 7 2019
https://i.imgur.com/CkMJK6D.jpg
17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

NV
23 tháng 9 2019

ĐKXĐ: \(x\ne\frac{k\pi}{2}\)

\(\Leftrightarrow tan^2x-2cot^2x+2=0\)

Đặt \(tan^2x=a>0\)

\(a-\frac{2}{a}+2=0\)

\(\Leftrightarrow a^2+2a-2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\sqrt{3}-1\\a=-\sqrt{3}-1< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow tan^2x=\sqrt{3}-1\Rightarrow tanx=\pm\sqrt{\sqrt{3}-1}=tan\left(\pm\alpha\right)\)

\(\Rightarrow x=\pm\alpha+k\pi\)

23 tháng 9 2019

Cho em hỏi sao lại có +2 ạ.

29 tháng 8 2020

Ta có: \(\tan^2x+\cot^2x=2\)

\(\Leftrightarrow\tan^2x+2+\frac{1}{\tan^2x}=4\)

\(\Leftrightarrow\left(\tan x+\frac{1}{\tan x}\right)^2=4\)

\(\Leftrightarrow\left(\frac{\sin x}{\cos x}+\frac{1}{\frac{\sin x}{\cos x}}\right)^2=4\)

\(\Leftrightarrow\left(\frac{\sin^2x+\cos^2x}{\sin x.\cos x}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{\sin x.\cos x}\right)^2=4\)

\(\Leftrightarrow4.\sin^2x.\cos^2x=1\)

\(\Leftrightarrow\sin^22x=1\)

\(\Leftrightarrow\orbr{\begin{cases}\sin2x=1\\\sin2x=-1\end{cases}}\Rightarrow2x=\left(2n-1\right)\cdot\frac{\pi}{2}\)

\(\Rightarrow x=\left(2n-1\right)\cdot\frac{\pi}{4}=\frac{n\pi}{2}-\frac{\pi}{4}\) (với n là số tự nhiên)

16 tháng 7 2018

tan(2x+10o)+cot(x)=0

<=> tan(2x+10o)+tan(90o-x)=0

<=>tan(x+100o)*[1-tan(2x-10o)*tan(90o-x)]=0

*tan(x+100o)=0 => x=....

*1-tan(2x-10o)*tan(90o-x)=0

<=> tan(2x-10o)=tanx <=> x=....vui