Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai cạnh góc vuông là x và y.
ta có:
x/3 = y/4
x2 + y2 = 102 (*)
Đặt x/3 = y/4 = t
⇒ x = 3 . t và y = 4 . t
Thay x, y vào (*) ta có:
(3 . t)2 + (4 . t)2 = 102
[32 + 42] . t2 = 102
t2 = 4
⇒ t = 2
⇒ x = 3 . 2 = 6 và y = 4 . 2 = 8
(chắc vậy -_-)
câu 2
Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125
Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*)
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**)
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0
=> AB^2 = 5605. Vì AB > 0 => AB = 75
AC = 4/3 x AC => AC = 100
Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC.
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có:
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80
(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
Gọi độ dài 2 cạnh góc vuông là `a,b(m)(a,b>0)`
Theo bài `a+b=28<=>a=28-b`
Áp dụng đl pytago vào ta có:
`a^2+b^2=20^2=400`
`<=>(28-b)^2+b^2=400`
`<=>b^2-56b+784+b^2-400=0`
`<=>2b^2-56b+384=0`
`<=>b^2-28b+192=0`
`<=>b_1=16,b_2=12`
`<=>a_1=12,a_2=16`
Vậy diện tích tam giác vuông là `(ab)/2=96m^2`
Gọi `a,b` là độ dài 2 cạnh góc vuông, `c` là độ dài cạnh huyền `(m) (a,b,c >0)`
Theo đề bài: `a+b=28` (1)
Áp dụng định lí Pytago:
`a^2+b^2=c^2=20^2=400` (2)
Từ (1) và (2) ta có hệ: \(\left\{{}\begin{matrix}a+b=28\\a^2+b^2=400\end{matrix}\right.\)
Giải hệ ta được: `(a,b) = (16;12) ; (12;16)`
Diện tích là: `S=1/2 . 16 .12 = 96(m^2)`
Vậy diện tích là `96m^2`.
Tham khảo:Một tam giác vuông có cạnh huyền là 5 và đường cao ứng với cạnh huyền là 2. Tính cạnh nhỏ nhất của tam giácnày?
Goi 2 canh goc vuong la b va c (b > c)
Ap dung he thuc luong va dinh ly Pythagore ta co he pt :
{ b.c = 5.2 = 10 (1)
{ b^2 + c^2 = 5^2 = 25 (2)
(1) ---> 2bc = 20 (3)
(2) + (3) ---> (b+c)^2 = 45 ---> b+c = 3 can 5 (4)
(2) - (3) ---> (b-c)^2 = 5 ---> b-c = can 5 (5)
(4),(5) ---> b = 2 can 5 ; c = can 5
Vay canh nho nhat cua tam giac vuong do la can 5.