Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)
\(BD\)chung
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b, Theo câu a, ta có :
\(\Delta ABD=\Delta EBD\left(cmt\right)\)
\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )
\(\Rightarrow\Delta ABE\)là tam giác cân
Lại có : \(\widehat{B}=60^o\)
\(\Rightarrow\Delta ABE\)là tam giác đều
c, Do : \(\Delta ABE\)đều
\(\Rightarrow AB=BE=5\left(cm\right)\)
Do : \(BD\)là phân giác của \(\widehat{B}\)
\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)
Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)
Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)
\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)
Xét : \(\Delta BDE\)và \(\Delta CDE\)có :
\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)
\(DE\)chung
\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)
\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)
\(\Rightarrow BE=CE=5\left(cm\right)\)
\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)
Vậy : \(BC=10\left(cm\right)\)
Gọi x là dộ dài cạnh góc vuông thứ nhất (x < 20)
=> độ dài cạnh góc vuông thứ hai : 48 - 20 -x =28 - x
Theo đề bài ta có pt:
x2 + (28 -x)2 =202 (giải pt tìm x)
Gọi a là độ dài cạnh huyền của tam giác vuông.
Theo định lý Pi-ta-go ta có:
a2 = 72 + 242 = 625
⇒ a = 25cm
⇒ Độ dài trung tuyến ứng với cạnh huyền bằng: a/2 = 25/2 = 12,5 (cm).
1a)
\(\hept{\begin{cases}2x-2017=1\\12x-2017=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=2018\\12x=2018\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1009\\x=\frac{1009}{6}\end{cases}}\)
Em nghĩ là như vậy . Nếu có gì em sẽ sửa.
Gọi số thứ nhất là a ( 0 < a < 125 )
Số thứ hai là 4a
Ta có phương trình :
\(a+4a=125\)
\(\Leftrightarrow5a=125\)
\(\Leftrightarrow a=25\left(tm\right)\)
Vậy số thứ 1 là 25
Số thứ 2 = 25 x 4 = 100
Vậy ...
Gọi tam giác vuông cân đó là ABC
Ta có:\(\frac{AB+AC}{2}=\sqrt{2}\Leftrightarrow\frac{2AC}{2}=\sqrt{2}.\)
\(\Rightarrow AB=AC=\sqrt{2}\)
\(\sqrt{2}\)nha ban