Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N I H
Bài làm
Gọi giao điểm của đường trung trực BC và HC là I.
=> NI vuông góc BC
Mà AH vuông góc BC
=> NI // AH
Ta có: BC = BH + HC
hay BC = 15 + 27
=> BC = 42
Mà I là trung điểm BC ( Do IN trung trực )
=> BI = IC = 42/2 = 21 ( cm )
Xét tam giác AHC có:
IN // AH
Theo định lí Thales có:
\(\frac{IC}{HC}=\frac{CN}{AC}\)
hay \(\frac{21}{27}=\frac{CN}{45}\)
=> CN = 21 . 45 / 27 = 35
Vậy CN = 35 cm
# Học tốt #
Áp dụng định lý Pytago vào tam giác ABC vuông tại A, ta có:
A B 2 + A C 2 = B C 2 ⇔ 15 2 + 20 2 = B C 2 ⇒ B C = 25
Ta có: S A B C = 1 2 .AB.AC = 1 2 .AH.BC ⇒ A H = A B . A C B C = 15.20 25 = 12
Áp dụng định lý Pytago trong tam giác AHB vuông tại H, ta có:
A B 2 = A H 2 + H B 2 ⇔ 15 2 = 12 2 + H B 2 ⇒ H B 2 = 81 ⇒ H B = 9 ⇒ H C = B C – H B = 25 – 9 = 16
Vì AE là phân giác của tam giác CAH nên: A C A H = C E E H ⇔ A C A H = C H − H E E H
ó 20 12 = − H E H E ó 20HE = 12(16 – HE) ó 20HE + 12HE = 12.16
ó 32HE = 192 ó HE = 6(cm)
Đáp án: B