K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

Xét \(\Delta\)ABC đều, có độ dài cạnh bằng a

Theo định lý sin ta có: \(\frac{BC}{\sin\widehat{BAC}}=2R\Leftrightarrow\frac{a}{\sin60^o}=2\cdot4\Leftrightarrow a=8\cdot\widehat{60^o}=4\sqrt{3}\)

Vậy diện tích tam giác cần tính là: \(S_{\Delta ABC}=\frac{1}{2}AB\cdot AC\cdot\sin\widehat{BAC}=\sin\left(4\sqrt{3}\right)^2\cdot\sin60^o=12\sqrt{3}\left(cm^2\right)\)

Nguồn: Hoàng Ngọc Khánh

NV
30 tháng 1 2022

Do tam giác ABC đều nên tâm đường tròn ngoại tiếp O trùng trọng tâm

Gọi AM là trung tuyến (kiêm đường cao), theo tính chất trọng tâm:

\(AM=\dfrac{3}{2}AO=\dfrac{3}{2}R=12\)

\(AM=\dfrac{AB\sqrt{3}}{2}\Rightarrow AB=8\sqrt{3}\)

\(S=\dfrac{1}{2}AM.AB=48\sqrt{3}\)

30 tháng 1 2022

Tam giác ABC đều.

\(\Rightarrow AB=AC=BC\) (Tính chất tam giác đều).

Áp dụng định lý sin vào tam giác ABC đều, ta có:

\(\dfrac{a}{\sin A}=2R.\Rightarrow\dfrac{BC}{\sin60}=2.8.\Leftrightarrow BC=16.\dfrac{\sqrt{3}}{2}=8\sqrt{3}\) (đvđd).

\(\Rightarrow BC^2=192\) (đvđd).

Ta có: \(S=\dfrac{1}{2}ac.\sin B.\)

\(\Rightarrow S=\dfrac{1}{2}BC.AB.\sin60^o=\dfrac{1}{2}.BC^2.\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{3}}{4}.192=48\sqrt{3}\) (đvdt).

5 tháng 5 2019

Nhận xét: Tam giác ABC có a2 + b2 = c2 nên vuông tại C.

Giải bài 10 trang 62 sgk Hình học 10 | Để học tốt Toán 10

+ Diện tích tam giác: S = 1/2.a.b = 1/2.12.16 = 96 (đvdt)

+ Chiều cao ha: ha = AC = b = 16.

+ Tâm đường tròn ngoại tiếp tam giác là trung điểm của AB.

Bán kính đường tròn ngoại tiếp R = AB /2 = c/2 = 10.

+ Bán kính đường tròn nội tiếp tam giác: S = p.r ⇒ r = S/p.

Mà S = 96, p = (a + b + c) / 2 = 24 ⇒ r = 4.

+ Đường trung tuyến ma:

ma2 = (2.(b2 + c2) – a2) / 4 = 292 ⇒ ma = √292.

6 tháng 2 2019

Gọi O là tâm đa giác, giả sử A, B là hai đỉnh kề nhau của đa giác

Ta có A O B ^ = 360 n ° . Diện tích đa giác đều bằng.

S = n S O A B = n . 1 2 O A . O B . sin A O B ^ = 1 2 n R 2 . sin 360 n °

ĐÁP ÁN A

5 tháng 2 2022

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

5 tháng 2 2022

này giống trên mạng r 

30 tháng 3 2017

Giải bài 10 trang 62 sgk Hình học 10 | Để học tốt Toán 10

19 tháng 1 2021

Tham khảo:

Cho tam giác ABCa) CM: \(\left(p-a\right)\left(p-b\right)\left(p-c\right)< \dfrac{1}{8}abc\)b) \(\dfrac{r}{R}\le\dfrac{1... - Hoc24

19 tháng 1 2021

Like + share công khai giúp t với.

Facebook

10 tháng 3 2022

\(\widehat{A}=180^o-30^o-44^o=106^o.\)

Áp dụng định lý sin ta có:

\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}.\)

\(\Rightarrow\dfrac{BC}{sin106^o}=\dfrac{7}{sin44^o}=\dfrac{AB}{sin30^o}.\)

\(\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{7.sin106^o}{sin44^o}\approx9,7.\\AB=\dfrac{7.sin30^o}{sin44^o}\approx5,0.\end{matrix}\right.\) (đvđd).

\(S_{\Delta ABC}=\dfrac{1}{2}AB.AC.\sin A\approx\dfrac{1}{2}.5,0.7.\sin106^o\approx17,4\) (đvdt).

 \(S=pr=\dfrac{AB+AC+BC}{2}.r.\\ \Rightarrow17,4\approx\dfrac{5,0+7+9,7}{2}.r.\) 

\(\Rightarrow r\approx1,6\) (đvđd).