Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)
nên ΔDEF vuông tại D
trong \(\Delta DEF\) vuông tại D có
\(DK^2=EK.KF\)(đlý)\(\Rightarrow KF=\dfrac{DK^2}{EK}=\dfrac{6^2}{8}\)=4,5
ta có:EF=EK+KF=8+4,5=12,5
\(DE^2=EF.EK\left(đlý\right)\)=12,5.8=100\(\Rightarrow DE=10\)
\(DF^2=EF.KF\)(đlý)=12,5.4,5=56,25\(\Rightarrow\)DF=7,5
\(\dfrac{DF}{EF}=\dfrac{4}{5}\)
\(\Leftrightarrow DF=\dfrac{4}{5}EF\)
\(\Leftrightarrow DF=24\left(cm\right)\)
\(\Leftrightarrow FE=30\left(cm\right)\)
\(\Leftrightarrow DI=14.4\left(cm\right)\)
\(\widehat{F}=90^0-\widehat{E}=30^0\)
\(DE=\tan F\cdot DF=\tan30^0\cdot10=\dfrac{\sqrt{3}}{3}\cdot10=\dfrac{10\sqrt{3}}{3}\left(cm\right)\\ EF=\dfrac{DE}{\sin F}=\dfrac{\dfrac{10\sqrt{3}}{3}}{\sin30^0}=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
DH=15(cm)
\(OH=3\sqrt{15}\left(cm\right)\)
\(OC=\sqrt{OH^2+CH^2}=\sqrt{81+135}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
a, Ta có ∆DEF vuông vì D E 2 + D F 2 = F E 2
b, c, Tìm được: DK = 24 5 cm và HK = 32 5 cm
K D E ^ ≈ 36 0 52 ' ; K E D ^ = 35 0 8 '
d, Tìm được DM=3cm, FM=5cm và EM = 3 5 cm
e, f, Ta có: sin D F K ^ = D K D F ; sin D F E ^ = D E E F
=> D K D F = D E E F => ED.DF = DK.EF
a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)
\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)
\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)
\(\Rightarrow DI=12\left(cm\right)\)
b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:
\(DF^2=EF^2-DE^2\)
\(\Rightarrow DF^2=15^2-12^2=81\)
\(\Rightarrow DF=9\left(cm\right)\)
Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)
\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)
Đề sai rồi bạn